×

Algebraic hypermap morphisms. (English) Zbl 0983.20002

Algebraic hypermaps combinatorially describe topological hypermaps, that is, embeddings of hypergraphs in compact orientable surfaces. For any set \(\Omega\) denote by \(\text{Sym}(\Omega)\) the group of all permutations of \(\Omega\). An algebraic hypermap \(H\) is a triple \((\Omega,\sigma,\alpha)\), where \(\Omega\) is a finite set, \(\sigma,\alpha\in\text{Sym}(\Omega)\), and the group \(\langle\sigma,\alpha\rangle\) generated by \(\sigma\) and \(\alpha\) is transitive on \(\Omega\). In this paper the authors introduce hypermap morphisms, a natural notion of degree and brach number of hypermap morphisms. Theorem 1.1. Let \(\Phi\colon H\to H'\) be a hypermap morphism with degree \(m\) and branch number \(B\). Let \(g\) and \(g'\) be the genera of \(H\) and \(H'\), respectively. Then \(2g-2=m(2g'-2)+B\).

MSC:

20B20 Multiply transitive finite groups
05C10 Planar graphs; geometric and topological aspects of graph theory
05C65 Hypergraphs
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
20B05 General theory for finite permutation groups
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Cacciari, L., The Riemann-Hurwitz formula for hypermap congruences, Europ. J. Combinatorics, 10, 419-425 (1989) · Zbl 0685.05031
[2] Cori, R.; Machı̀, A., Maps, hypermaps and their automorphisms: a survey, I, Expo. Math., 10, 403-427 (1992) · Zbl 0772.05037
[3] Cori, R.; Machı̀, A., Maps, hypermaps and their automorphisms: a survey, III, Expo. Math., 10, 449-467 (1992) · Zbl 0772.05039
[4] Corn, D.; Singerman, D., Regular hypermaps, Europ. J. Combinatorics, 9, 337-351 (1988) · Zbl 0665.57002
[5] Farkas, H. M.; Kra, I., Riemann Surfaces, Graduate Texts in Mathematics (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0475.30001
[6] Jones, G. A.; Singerman, D., Theory of maps on orientable surfaces, Proc. London Math. Soc., 37, 273-307 (1978) · Zbl 0391.05024
[7] Jones, G. A.; Singerman, D., Belyi functions, hypermaps and Galois groups, Bull. London Math. Soc., 28, 561-590 (1996) · Zbl 0853.14017
[8] Lochak, P.; Schneps (eds), L., Geometric Galois Actions I, London Mathematical Society Lecture Note Series (1997), Cambridge University Press: Cambridge University Press Cambridge, UK
[9] Lochak, P.; Schneps (eds), L., Geometric Galois Actions II, London Mathematical Society Lecture Note Series (1997), Cambridge University Press: Cambridge University Press Cambridge, UK
[10] Machı̀, A., The Riemann-Hurwitz formula for the centralizer of a pair of permutations, Arch. Math., 42, 280-288 (1984) · Zbl 0522.20003
[11] Schneps (ed.), L., The Grothendieck Theory of Dessins d’Enfants, London Mathematical Society Lecture Note Series (1994), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0798.00001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.