×

The MAPS based on trigonometric basis functions for solving elliptic partial differential equations with variable coefficients and Cauchy-Navier equations. (English) Zbl 07316641

Summary: In this paper, we extended the method of approximate particular solutions (MAPS) using trigonometric basis functions to solve two-dimensional elliptic partial differential equations (PDEs) with variable-coefficients and the Cauchy-Navier equations. The new approach is based on the closed-form particular solutions for second-order differential operators with constant coefficients. For the Cauchy-Navier equations, a reformulation of the equations is required so that the particular solutions for the new differential operators are available. Five numerical examples are provided to demonstrate the effectiveness of the proposed method.

MSC:

34-XX Ordinary differential equations
65-XX Numerical analysis

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, C. S.; Fan, C. M.; Wen, P. H., The method of approximate particular solutions for solving elliptic problems with variable coefficients, Int. J. Comput. Math., 8, 545-559 (2011) · Zbl 1245.65172
[2] Chen, C. S.; Fan, C. M.; Wen, P. H., The method of approximate particular solutions for solving certain partial differential equations, Numer. Methods Partial Differential Equations, 28, 506-522 (2012) · Zbl 1242.65267
[3] Dangal, Thir; Chen, C. S.; Lin, Ji, Polynomial particular solutions for solving elliptic partial differential equations, Comput. Math. Appl., 73, 60-70 (2017) · Zbl 1368.65255
[4] Fasshauer, G. E., (Meshfree Approximation Methods with MATLAB. Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6 (2007), World Scientific) · Zbl 1123.65001
[5] Golberg, M. A.; Muleshkov, A. S.; Chen, C. S.; Cheng, A. H.D., Polynomial particular solutions for certain partial differential operators, Numer. Methods Partial Differential Equations, 19, 112-133 (2003) · Zbl 1019.65096
[6] Kansa, E. J., Multiquadrics — a scattered data approximation scheme with applications to computational fluid dynamics — II, Comput. Math. Appl., 19, 8/9, 147-161 (1990) · Zbl 0850.76048
[7] Karageorghis, A.; Jankowska, M. A.; Chen, C. S., Kansa-RBF algorithms for elliptic problems in regular polygonal domains, Numer. Algor., 79, 2, 399-421 (2018) · Zbl 1405.65157
[8] Karageorghis, A.; Kyza, I., Efficient algorithms for approximating particular solutions of elliptic equations using Chebyshev polynomials, Commun. Comput. Phys., 2, 501-521 (2007) · Zbl 1164.65506
[9] Le, J.; Jin, H.; Lv, X. G.; Cheng, Q. S., A preconditioned method for the solution of the Robbins problem for the Helmholtz equation, ANZIAM J., 52, 87-100 (2010) · Zbl 1234.65037
[10] Li, H. B.; Huang, T. Z.; Zhang, Y.; Liu, X. P.; Gu, T. X., Chebyshev-type methods and preconditioning techniques, Appl. Math. Comput., 218, 260-270 (2011) · Zbl 1226.65024
[11] Lin, J.; Chen, C. S.; Liu, C. S.; Lu, J., Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions, Comput. Math. Appl., 72, 3, 555-567 (2016) · Zbl 1359.65222
[12] Liu, Xial-Yan; Karageorghis, A.; Chen, C. S., A Kansa-radial basis function method fo elliptic boundary value problems in annular domains, J. Sci. Comput., 65, 1240-1269 (2015) · Zbl 1328.65254
[13] Marin, Liviu; Tomas Johansson, B., Relaxation procedures for an iterative MFS algorithm for the stable reconstruction of elastic fields from cauchy data in two-dimensional isotropic linear elasticity, Int. J. Solids Struct., 47, 3462-3479 (2010) · Zbl 1203.74147
[14] Muleshkov, A. S.; Golberg, M. A.; Chen, C. S., Particular solutions for axisymmetric Helmholtz-type operators, Eng. Anal. Bound. Elem., 29, 1066-1076 (2005) · Zbl 1182.76930
[15] Rippa, S., An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11, 193-210 (1999) · Zbl 0943.65017
[16] Tian, Zhaolu; Li, Xingxiang; Fan, C. M.; Chen, C. S., The method of particular solutions using trigonometric basis functions, J. Comput. Appl. Math., 335, 20-32 (2018) · Zbl 1524.65900
[17] Tsai, C. C., Particular solutions of Chebyshev polynomials for polyharmonic and poly-Helmholtz equations, CMES Comput. Model. Eng. Sci., 27, 151-162 (2008) · Zbl 1232.65173
[18] Tsai, C. C., The particular solutions of Chebyshev polynomials for Reissner plates under arbitrary loadings, CMES Comput. Model. Eng. Sci., 45, 249-271 (2009) · Zbl 1357.74033
[19] Wang, C.; Huang, T. Z.; Wen, C., A new preconditioner for indefinite and asymmetric matrices, a new preconditioner for indefinite and asymmetric matrices, Appl. Math. Comput., 219, 11036-11043 (2013) · Zbl 1302.65073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.