×

Three-dimensional diffraction-free Airy pulses in a carbon nanotube medium under conditions of an optical resonator. (English. Russian original) Zbl 1492.82023

Russ. Phys. J. 64, No. 5, 886-892 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 64, No. 5, 110-115 (2021).
Summary: The propagation of three-dimensional extremely short optical pulses with the longitudinal Airy profile is theoretically investigated in a semiconductor carbon nanotube medium under conditions of an optical resonator. Using numerical simulation, it has been found that carbon nanotubes placed in the optical resonator create the medium in which the pulse propagates stably and conserves its energy, thereby enabling one to control some properties of an extremely short pulse (its velocity and shape). Calculations of the pulse dynamics were carried out at long times, on the order of 100 ps.

MSC:

82D77 Quantum waveguides, quantum wires
82D80 Statistical mechanics of nanostructures and nanoparticles
78A50 Antennas, waveguides in optics and electromagnetic theory
78A60 Lasers, masers, optical bistability, nonlinear optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berry, MV; Balazs, ML, Am. J. Phys., 47, 264-267 (1979) · doi:10.1119/1.11855
[2] Siviloglou, GA; Christodoulides, DN, Opt. Lett., 32, 979-981 (2007) · doi:10.1364/OL.32.000979
[3] Siviloglou, GA; Broky, J.; Dogariu, A.; Christodoulides, DN, Phys. Rev. Lett., 99, 213901 (2007) · doi:10.1103/PhysRevLett.99.213901
[4] Broky, J.; Siviloglou, GA; Dogariu, A.; Christodoulides, DN, Opt. Express, 16, 12880-12891 (2008) · doi:10.1364/OE.16.012880
[5] Jiang, J-W; Wang, J-S, J. Appl. Phys., 110, 124319 (2011) · doi:10.1063/1.3671069
[6] Leblond, H.; Mihalache, D., Phys. Rev. A, 86 (2012) · doi:10.1103/PhysRevA.86.043832
[7] Belonenko, M., J. Russ. Las. Res., 27, 457 (2006) · doi:10.1007/s10946-006-0027-7
[8] Bobenko, NG; Egorushkin, VE; Melnikova, NV; Ponomarev, AN, Physica E, 60, 11-16 (2014) · doi:10.1016/j.physe.2014.01.026
[9] Ponomarev, AN; Egorushkin, VE; Melnikova, NV; Bobenko, NG, Physica E, 66, 13-17 (2015) · doi:10.1016/j.physe.2014.09.005
[10] J. S. Kivshar’ and G. P. Agraval, Optical Solitons. From Lightguides to Photon Crystals [in Russian], Fizmatlit, Moscow (2005).
[11] Eletskii, AV, Physics-Uspekhi, 40, 9, 899-924 (1997) · doi:10.1070/PU1997v040n09ABEH000282
[12] Dresselhaus, MS; Dresselhaus, G.; Eklund, PC, Science of Fullerenes and Carbon Nanotubes (1996), San Diego: Academic Press, San Diego
[13] Bullaf, R.; Kodri, F., Solitons [Russian translation] (1983), Moscow: Mir, Moscow
[14] Zhukov, AV; Bouffanais, R.; Fedorov, EG; Belonenko, MB, J. Appl. Phys., 114, 143106 (2013) · doi:10.1063/1.4824370
[15] A. V. Zhukov, R. Bouffanais, M. B. Belonenko, et al., Appl. Phys. B, 123, Article Number 196 (2017); doi:10.1007/s00340-017-6767-y.
[16] Belonenko, MB; Dvuzhilov, IS; Nevzorova, YV, Opt. Spectrosc., 123, 1, 111-116 (2017) · doi:10.1134/S0030400X17070049
[17] Dvuzhilov, IS; Dvuzhilova, YV; Konobeeva, NN; Belonenko, MB, Romanian Rep. Phys., 72, 410 (2020)
[18] Bakhvalov, NS, Numerical Methods (Analysis, Algebra, Ordinary Differential Equations) [in Russian] (1975), Moscow: Nauka, Moscow
[19] Zhukov, AV; Bouffanais, R.; Belonenko, MV; Dvuzhilov, IS, Phys. Lett. Sec. A, 381, 10, 931-934 (2017) · doi:10.1016/j.physleta.2017.01.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.