Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong; He, Yinnian Stability and error estimate of the operator splitting method for the phase field crystal equation. (English) Zbl 07301286 J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021). MSC: 65M70 65T50 65M12 35K57 35R11 74N05 35Q74 82D80 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021; Zbl 07301286) Full Text: DOI
Lee, Chaeyoung; Kim, Hyundong; Yoon, Sungha; Kim, Sangkwon; Lee, Dongsun; Park, Jinate; Kwak, Soobin; Yang, Junxiang; Wang, Jian; Kim, Junseok An unconditionally stable scheme for the Allen-Cahn equation with high-order polynomial free energy. (English) Zbl 07299052 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021). MSC: 94A 68U 65L PDF BibTeX XML Cite \textit{C. Lee} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021; Zbl 07299052) Full Text: DOI
Presho, Michael; Hill, Michael A conservative generalized multiscale finite volume/element method for modeling two-phase flow with capillary pressure. (English) Zbl 1448.35151 J. Comput. Appl. Math. 381, Article ID 113026, 15 p. (2021). MSC: 35J25 35K10 65N30 PDF BibTeX XML Cite \textit{M. Presho} and \textit{M. Hill}, J. Comput. Appl. Math. 381, Article ID 113026, 15 p. (2021; Zbl 1448.35151) Full Text: DOI
Chen, Liang; Chang, Xiaokai; Liu, Sanyang A three-operator splitting perspective of a three-block ADMM for convex quadratic semidefinite programming and beyond. (English) Zbl 07309373 Asia-Pac. J. Oper. Res. 37, No. 4, Article ID 2040009, 30 p. (2020). MSC: 90C PDF BibTeX XML Cite \textit{L. Chen} et al., Asia-Pac. J. Oper. Res. 37, No. 4, Article ID 2040009, 30 p. (2020; Zbl 07309373) Full Text: DOI
He, Yuchen; Kang, Sung Ha; Liu, Hao Curvature regularized surface reconstruction from point clouds. (English) Zbl 07292243 SIAM J. Imaging Sci. 13, No. 4, 1834-1859 (2020). MSC: 65D18 65K10 49K20 49Q10 PDF BibTeX XML Cite \textit{Y. He} et al., SIAM J. Imaging Sci. 13, No. 4, 1834--1859 (2020; Zbl 07292243) Full Text: DOI
Moayeri, M. M.; Rad, J. A.; Parand, K. Dynamical behavior of reaction-diffusion neural networks and their synchronization arising in modeling epileptic seizure: a numerical simulation study. (English) Zbl 07271192 Comput. Math. Appl. 80, No. 8, 1887-1927 (2020). MSC: 92C32 92B20 92B25 PDF BibTeX XML Cite \textit{M. M. Moayeri} et al., Comput. Math. Appl. 80, No. 8, 1887--1927 (2020; Zbl 07271192) Full Text: DOI
Ge, Zhili; Cai, Xingju; Zhang, Xin Convergence rate analysis of an operator splitting method for solving a class of variational inequality problems. (Chinese. English summary) Zbl 07266918 J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 1, 5-12 (2020). MSC: 65K15 PDF BibTeX XML Cite \textit{Z. Ge} et al., J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 1, 5--12 (2020; Zbl 07266918) Full Text: DOI
Hieu, Dang Van; Vy, Le Van; Quy, Pham Kim Three-operator splitting algorithm for a class of variational inclusion problems. (English) Zbl 1440.65060 Bull. Iran. Math. Soc. 46, No. 4, 1055-1071 (2020). MSC: 65J15 47H05 47J25 47J20 91B50 PDF BibTeX XML Cite \textit{D. Van Hieu} et al., Bull. Iran. Math. Soc. 46, No. 4, 1055--1071 (2020; Zbl 1440.65060) Full Text: DOI
Suzuki, Yuya; Nuyens, Dirk Rank-1 lattices and higher-order exponential splitting for the time-dependent Schrödinger equation. (English) Zbl 07240110 Tuffin, Bruno (ed.) et al., Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the 13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing, Rennes, France, July 1–6, 2018. Cham: Springer (ISBN 978-3-030-43464-9/hbk; 978-3-030-43465-6/ebook). Springer Proceedings in Mathematics & Statistics 324, 485-502 (2020). MSC: 65C05 PDF BibTeX XML Cite \textit{Y. Suzuki} and \textit{D. Nuyens}, in: Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the 13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing, Rennes, France, July 1--6, 2018. Cham: Springer. 485--502 (2020; Zbl 07240110) Full Text: DOI
Damiani, Leonardo Hax; Kosakowski, Georg; Glaus, Martin A.; Churakov, Sergey V. A framework for reactive transport modeling using FEniCS-Reaktoro: governing equations and benchmarking results. (English) Zbl 1439.86004 Comput. Geosci. 24, No. 3, 1071-1085 (2020). MSC: 86-08 65M60 65Y15 PDF BibTeX XML Cite \textit{L. H. Damiani} et al., Comput. Geosci. 24, No. 3, 1071--1085 (2020; Zbl 1439.86004) Full Text: DOI
Lee, Dongsun The numerical solutions for the energy-dissipative and mass-conservative Allen-Cahn equation. (English) Zbl 1446.65070 Comput. Math. Appl. 80, No. 1, 263-284 (2020). MSC: 65M06 35Q56 74N05 PDF BibTeX XML Cite \textit{D. Lee}, Comput. Math. Appl. 80, No. 1, 263--284 (2020; Zbl 1446.65070) Full Text: DOI
Malitsky, Yura; Tam, Matthew K. A forward-backward splitting method for monotone inclusions without cocoercivity. (English) Zbl 1445.47041 SIAM J. Optim. 30, No. 2, 1451-1472 (2020). MSC: 47J22 49M29 90C25 47H05 47J25 65K15 PDF BibTeX XML Cite \textit{Y. Malitsky} and \textit{M. K. Tam}, SIAM J. Optim. 30, No. 2, 1451--1472 (2020; Zbl 1445.47041) Full Text: DOI
Zhai, Shuying; Wu, Longyuan; Wang, Jingying; Weng, Zhifeng Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method. (English) Zbl 1447.65037 Numer. Algorithms 84, No. 3, 1155-1178 (2020). Reviewer: Srinivasan Natesan (Assam) MSC: 65M06 65M70 65M12 35R11 26A33 65L06 PDF BibTeX XML Cite \textit{S. Zhai} et al., Numer. Algorithms 84, No. 3, 1155--1178 (2020; Zbl 1447.65037) Full Text: DOI
Bùi, Minh N.; Combettes, Patrick L. The Douglas-Rachford algorithm converges only weakly. (English) Zbl 1443.47058 SIAM J. Control Optim. 58, No. 2, 1118-1120 (2020). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{M. N. Bùi} and \textit{P. L. Combettes}, SIAM J. Control Optim. 58, No. 2, 1118--1120 (2020; Zbl 1443.47058) Full Text: DOI
Lee, Hyun Geun A new conservative Swift-Hohenberg equation and its mass conservative method. (English) Zbl 1439.35217 J. Comput. Appl. Math. 375, Article ID 112815, 10 p. (2020). MSC: 35K35 65M70 35J35 35K25 82C10 82M22 PDF BibTeX XML Cite \textit{H. G. Lee}, J. Comput. Appl. Math. 375, Article ID 112815, 10 p. (2020; Zbl 1439.35217) Full Text: DOI
He, Dongdong; Pan, Kejia; Hu, Hongling A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. (English) Zbl 1434.65117 Appl. Numer. Math. 151, 44-63 (2020). MSC: 65M06 35R11 35Q56 65M12 PDF BibTeX XML Cite \textit{D. He} et al., Appl. Numer. Math. 151, 44--63 (2020; Zbl 1434.65117) Full Text: DOI
Hausenblas, Erika; Randrianasolo, Tsiry Avisoa; Thalhammer, Mechtild Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic gray-Scott equations. (English) Zbl 1427.60123 J. Comput. Appl. Math. 364, Article ID 112335, 27 p. (2020). MSC: 60H15 92B05 35G50 35Q92 60G57 92-08 PDF BibTeX XML Cite \textit{E. Hausenblas} et al., J. Comput. Appl. Math. 364, Article ID 112335, 27 p. (2020; Zbl 1427.60123) Full Text: DOI
Chen, Zhenzhu; Shao, Sihong; Cai, Wei A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences. (English) Zbl 1452.65270 J. Comput. Phys. 396, 54-71 (2019). MSC: 65M70 81Q05 81-08 65Z05 PDF BibTeX XML Cite \textit{Z. Chen} et al., J. Comput. Phys. 396, 54--71 (2019; Zbl 1452.65270) Full Text: DOI
Sirajuddin, David; Hitchon, William N. G. A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. (English) Zbl 1452.76162 J. Comput. Phys. 392, 619-665 (2019). MSC: 76M20 76X05 35Q83 65M06 65M12 PDF BibTeX XML Cite \textit{D. Sirajuddin} and \textit{W. N. G. Hitchon}, J. Comput. Phys. 392, 619--665 (2019; Zbl 1452.76162) Full Text: DOI
Gidey, H. H.; Reddy, B. D. Operator-splitting methods for the 2D convective Cahn-Hilliard equation. (English) Zbl 1442.65194 Comput. Math. Appl. 77, No. 12, 3128-3153 (2019). MSC: 65M08 35K35 35K59 PDF BibTeX XML Cite \textit{H. H. Gidey} and \textit{B. D. Reddy}, Comput. Math. Appl. 77, No. 12, 3128--3153 (2019; Zbl 1442.65194) Full Text: DOI
Glowinski, Roland; Luo, Shousheng; Tai, Xue-Cheng Fast operator-splitting algorithms for variational imaging models: some recent developments. (English) Zbl 1446.94007 Kimmel, Ron (ed.) et al., Processing, analyzing and learning of images, shapes, and forms. Part 2. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 20, 191-232 (2019). MSC: 94A08 49Q10 65D18 PDF BibTeX XML Cite \textit{R. Glowinski} et al., Handb. Numer. Anal. 20, 191--232 (2019; Zbl 1446.94007) Full Text: DOI
Rastiello, Giuseppe; Riccardi, Francesco; Richard, Benjamin Discontinuity-scale path-following methods for the embedded discontinuity finite element modeling of failure in solids. (English) Zbl 1441.74272 Comput. Methods Appl. Mech. Eng. 349, 431-457 (2019). MSC: 74S05 65N30 74R10 PDF BibTeX XML Cite \textit{G. Rastiello} et al., Comput. Methods Appl. Mech. Eng. 349, 431--457 (2019; Zbl 1441.74272) Full Text: DOI
Çelikkaya, İhsan Operator splitting method for numerical solution of modified equal width equation. (English) Zbl 1434.35141 Tbil. Math. J. 12, No. 3, 51-67 (2019). MSC: 35Q51 74J35 33F10 65M60 65M70 65D07 PDF BibTeX XML Cite \textit{İ. Çelikkaya}, Tbil. Math. J. 12, No. 3, 51--67 (2019; Zbl 1434.35141) Full Text: DOI Euclid
Weng, Zhifeng; Zhai, Shuying; Feng, Xinlong Analysis of the operator splitting scheme for the Cahn-Hilliard equation with a viscosity term. (English) Zbl 1430.35201 Numer. Methods Partial Differ. Equations 35, No. 6, 1949-1970 (2019). MSC: 35Q35 35S05 65M20 65M70 65M06 65L06 34A30 34A34 PDF BibTeX XML Cite \textit{Z. Weng} et al., Numer. Methods Partial Differ. Equations 35, No. 6, 1949--1970 (2019; Zbl 1430.35201) Full Text: DOI
Kim, Hyundong; Lee, Chaeyoung; Lee, Jaehyun; Kim, Jaeyeon; Yu, Taeyoung; Chung, Gene; Kim, Junseok An explicit numerical algorithm for surface reconstruction from unorganized points using Gaussian filter. (English) Zbl 07161366 J. Korean Soc. Ind. Appl. Math. 23, No. 1, 31-38 (2019). MSC: 65D 94A08 PDF BibTeX XML Cite \textit{H. Kim} et al., J. Korean Soc. Ind. Appl. Math. 23, No. 1, 31--38 (2019; Zbl 07161366) Full Text: DOI
Güzel, Ismail; Adıyaman, Meltem; Somalı, S. Operator splitting methods for computation of eigenvalues of regular Sturm-Liouville problems. (English) Zbl 1438.65160 Surv. Math. Appl. 14, 261-275 (2019). MSC: 65L15 34L16 PDF BibTeX XML Cite \textit{I. Güzel} et al., Surv. Math. Appl. 14, 261--275 (2019; Zbl 1438.65160) Full Text: EMIS
Mohanty, R. K.; Kaur, Deepti; Singh, Swarn A class of two- and three-level implicit methods of order two in time and four in space based on half-step discretization for two-dimensional fourth order quasi-linear parabolic equations. (English) Zbl 1429.65193 Appl. Math. Comput. 352, 68-87 (2019). MSC: 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{R. K. Mohanty} et al., Appl. Math. Comput. 352, 68--87 (2019; Zbl 1429.65193) Full Text: DOI
Zhai, Shuying; Wang, Dongling; Weng, Zhifeng; Zhao, Xuan Error analysis and numerical simulations of Strang splitting method for space fractional nonlinear Schrödinger equation. (English) Zbl 07129384 J. Sci. Comput. 81, No. 2, 965-989 (2019). MSC: 70K75 65M70 65M12 81S40 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 81, No. 2, 965--989 (2019; Zbl 07129384) Full Text: DOI
Duong, Manh Hong; Lu, Yulong An operator splitting scheme for the fractional kinetic Fokker-Planck equation. (English) Zbl 1423.49045 Discrete Contin. Dyn. Syst. 39, No. 10, 5707-5727 (2019). MSC: 49S05 35Q84 49J40 PDF BibTeX XML Cite \textit{M. H. Duong} and \textit{Y. Lu}, Discrete Contin. Dyn. Syst. 39, No. 10, 5707--5727 (2019; Zbl 1423.49045) Full Text: DOI arXiv
Huang, Yunqing; Yang, Wei; Wang, Hao; Cui, Jintao Adaptive operator splitting finite element method for Allen-Cahn equation. (English) Zbl 1418.65132 Numer. Methods Partial Differ. Equations 35, No. 3, 1290-1300 (2019). MSC: 65M60 65M12 65M15 65H10 65M50 PDF BibTeX XML Cite \textit{Y. Huang} et al., Numer. Methods Partial Differ. Equations 35, No. 3, 1290--1300 (2019; Zbl 1418.65132) Full Text: DOI
Glowinski, Roland; Pan, Tsorng-Whay Two decades of wave-like equation for the numerical simulation of incompressible viscous flow: a review. (English) Zbl 1416.35005 Chetverushkin, B. N. (ed.) et al., Contributions to partial differential equations and applications. Invited papers of the conferences ‘Contributions to partial differential equations’, Université Pierre et Marie Curie, Paris, France, August 31 – September 1, 2015 and ‘Applied and computational mathematics’, University of Houston, Texas, USA, February 26–27, 2016. Cham: Springer. Comput. Methods Appl. Sci. 47, 221-250 (2019). MSC: 35-03 76-03 35Q30 35Q35 76M10 01A60 01A61 PDF BibTeX XML Cite \textit{R. Glowinski} and \textit{T.-W. Pan}, Comput. Methods Appl. Sci. 47, 221--250 (2019; Zbl 1416.35005) Full Text: DOI
Glowinski, Roland; Liu, Hao; Leung, Shingyu; Qian, Jianliang A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge-Ampère equation. (English) Zbl 1447.65141 J. Sci. Comput. 79, No. 1, 1-47 (2019); correction ibid. 79, No. 1, 48 (2019). Reviewer: Vit Dolejsi (Praha) MSC: 65N30 65J20 35J96 PDF BibTeX XML Cite \textit{R. Glowinski} et al., J. Sci. Comput. 79, No. 1, 1--47 (2019; Zbl 1447.65141) Full Text: DOI
Mohanty, R. K.; Khurana, Gunjan A new fast algorithm based on half-step discretization for 3D quasilinear hyperbolic partial differential equations. (English) Zbl 1404.65099 Int. J. Comput. Methods 16, No. 1, Article ID 1850090, 34 p. (2019). MSC: 65M06 65M12 35L20 35L15 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{G. Khurana}, Int. J. Comput. Methods 16, No. 1, Article ID 1850090, 34 p. (2019; Zbl 1404.65099) Full Text: DOI
Uskova, N. B.; Garkavenko, G. V. The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential. (Russian. English summary) Zbl 1438.39037 Sib. Zh. Chist. Prikl. Mat. 18, No. 1, 91-106 (2018). MSC: 39A70 47A10 47B39 PDF BibTeX XML Cite \textit{N. B. Uskova} and \textit{G. V. Garkavenko}, Sib. Zh. Chist. Prikl. Mat. 18, No. 1, 91--106 (2018; Zbl 1438.39037) Full Text: MNR
Qiao, Yuanyang; Zhai, Shuying; Feng, Xinlong An operator splitting method for image inpainting based on the Allen-Cahn equation. (English) Zbl 1449.65033 Chin. J. Eng. Math. 35, No. 6, 722-732 (2018). MSC: 65D18 PDF BibTeX XML Cite \textit{Y. Qiao} et al., Chin. J. Eng. Math. 35, No. 6, 722--732 (2018; Zbl 1449.65033) Full Text: DOI
Peynaud, Emilie Operator splitting and discontinuous Galerkin methods for advection-reaction-diffusion problem. Application to plant root growth. (English) Zbl 1425.92136 Biomath 7, No. 2, 92-110 (2018). MSC: 92C80 92C15 65M60 PDF BibTeX XML Cite \textit{E. Peynaud}, Biomath 7, No. 2, 92--110 (2018; Zbl 1425.92136) Full Text: DOI Link
He, Bing-Sheng; Xu, Ming-Hua; Yuan, Xiao-Ming Block-wise ADMM with a relaxation factor for multiple-block convex programming. (English) Zbl 1424.90204 J. Oper. Res. Soc. China 6, No. 4, 485-505 (2018). MSC: 90C25 90C30 PDF BibTeX XML Cite \textit{B.-S. He} et al., J. Oper. Res. Soc. China 6, No. 4, 485--505 (2018; Zbl 1424.90204) Full Text: DOI
Çelikkaya, İhsan Operator splitting solution of equal width wave equation based on the Lie-Trotter and Strang splitting methods. (English) Zbl 1412.35293 Konuralp J. Math. 6, No. 2, 200-208 (2018). MSC: 35Q51 74J35 33F10 PDF BibTeX XML Cite \textit{İ. Çelikkaya}, Konuralp J. Math. 6, No. 2, 200--208 (2018; Zbl 1412.35293) Full Text: Link
Bokil, Vrushali A.; Sakkaplangkul, Puttha Construction and analysis of weighted sequential splitting FDTD methods for the 3D Maxwell’s equations. (English) Zbl 1412.65067 Int. J. Numer. Anal. Model. 15, No. 6, 747-784 (2018). MSC: 65M06 65M12 65Z05 78M20 35Q61 78A25 PDF BibTeX XML Cite \textit{V. A. Bokil} and \textit{P. Sakkaplangkul}, Int. J. Numer. Anal. Model. 15, No. 6, 747--784 (2018; Zbl 1412.65067) Full Text: Link
Izadi, Mohammad Split-step finite difference schemes for solving the nonlinear Fisher equation. (English) Zbl 1407.65033 J. Mahani Math. Res. Cent. 7, No. 1, 37-55 (2018). MSC: 65F05 65K05 PDF BibTeX XML Cite \textit{M. Izadi}, J. Mahani Math. Res. Cent. 7, No. 1, 37--55 (2018; Zbl 1407.65033) Full Text: DOI
Csomós, Petra; Mena, Hermann Fourier-splitting method for solving hyperbolic LQR problems. (English) Zbl 1406.35449 Numer. Algebra Control Optim. 8, No. 1, 17-46 (2018). MSC: 35Q93 49J20 65M22 93B52 34H05 76B15 93C20 93C15 65T50 65F30 PDF BibTeX XML Cite \textit{P. Csomós} and \textit{H. Mena}, Numer. Algebra Control Optim. 8, No. 1, 17--46 (2018; Zbl 1406.35449) Full Text: DOI
Flohr, Robin; Rottmann-Matthes, Jens A splitting approach for freezing waves. (English) Zbl 1406.65058 Klingenberg, Christian (ed.) et al., Theory, numerics and applications of hyperbolic problems I, Aachen, Germany, August 2016. Cham: Springer (ISBN 978-3-319-91544-9/hbk; 978-3-319-91545-6/ebook). Springer Proceedings in Mathematics & Statistics 236, 539-550 (2018). MSC: 65M06 35M10 35C07 65L12 PDF BibTeX XML Cite \textit{R. Flohr} and \textit{J. Rottmann-Matthes}, in: Theory, numerics and applications of hyperbolic problems I, Aachen, Germany, August 2016. Cham: Springer. 539--550 (2018; Zbl 1406.65058) Full Text: DOI arXiv
Mollapourasl, Reza; Haghi, Majid; Liu, Ruihua Localized kernel-based approximation for pricing financial options under regime switching jump diffusion model. (English) Zbl 1416.91404 Appl. Numer. Math. 134, 81-104 (2018). MSC: 91G60 91G20 60J75 60G40 65M06 PDF BibTeX XML Cite \textit{R. Mollapourasl} et al., Appl. Numer. Math. 134, 81--104 (2018; Zbl 1416.91404) Full Text: DOI
Xiao, Xiantao; Li, Yongfeng; Wen, Zaiwen; Zhang, Liwei A regularized semi-smooth Newton method with projection steps for composite convex programs. (English) Zbl 1394.90534 J. Sci. Comput. 76, No. 1, 364-389 (2018). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Xiao} et al., J. Sci. Comput. 76, No. 1, 364--389 (2018; Zbl 1394.90534) Full Text: DOI arXiv
Boyaval, Sébastien; Caboussat, Alexandre; Mrad, Arwa; Picasso, Marco; Steiner, Gilles A semi-Lagrangian splitting method for the numerical simulation of sediment transport with free surface flows. (English) Zbl 1410.76157 Comput. Fluids 172, 384-396 (2018). MSC: 76M10 76M25 65M60 65M25 65M55 76D05 76T20 PDF BibTeX XML Cite \textit{S. Boyaval} et al., Comput. Fluids 172, 384--396 (2018; Zbl 1410.76157) Full Text: DOI
Cho, Chung-Ki; Lee, Byungjoon; Kim, Seongjai Dual-mesh characteristics for particle-mesh methods for the simulation of convection-dominated flows. (English) Zbl 1397.65214 SIAM J. Sci. Comput. 40, No. 3, A1763-A1783 (2018). Reviewer: Charis Harley (Johannesburg) MSC: 65M75 65M25 76M28 PDF BibTeX XML Cite \textit{C.-K. Cho} et al., SIAM J. Sci. Comput. 40, No. 3, A1763--A1783 (2018; Zbl 1397.65214) Full Text: DOI
Jeong, Darae; Kim, Junseok An explicit hybrid finite difference scheme for the Allen-Cahn equation. (English) Zbl 1432.65121 J. Comput. Appl. Math. 340, 247-255 (2018). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{D. Jeong} and \textit{J. Kim}, J. Comput. Appl. Math. 340, 247--255 (2018; Zbl 1432.65121) Full Text: DOI
Wang, Jian; Ban, Jungyup; Lee, Seongjin; Yoo, Changwoo Comparative study of numerical algorithms for the arithmetic Asian option. (English) Zbl 1391.93043 J. Korean Soc. Ind. Appl. Math. 22, No. 1, 75-89 (2018). MSC: 93B05 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Korean Soc. Ind. Appl. Math. 22, No. 1, 75--89 (2018; Zbl 1391.93043) Full Text: Link
Laadhari, Aymen An operator splitting strategy for fluid-structure interaction problems with thin elastic structures in an incompressible Newtonian flow. (English) Zbl 06869195 Appl. Math. Lett. 81, 35-43 (2018). MSC: 74 76 65 PDF BibTeX XML Cite \textit{A. Laadhari}, Appl. Math. Lett. 81, 35--43 (2018; Zbl 06869195) Full Text: DOI
Cervi, Jessica; Spiteri, Raymond J. High-order operator splitting for the bidomain and monodomain models. (English) Zbl 1385.92005 SIAM J. Sci. Comput. 40, No. 2, A769-A786 (2018). MSC: 92C05 92C30 65M20 PDF BibTeX XML Cite \textit{J. Cervi} and \textit{R. J. Spiteri}, SIAM J. Sci. Comput. 40, No. 2, A769--A786 (2018; Zbl 1385.92005) Full Text: DOI
Lee, Hyun Geun A second-order operator splitting Fourier spectral method for fractional-in-space reaction-diffusion equations. (English) Zbl 1380.65305 J. Comput. Appl. Math. 333, 395-403 (2018). MSC: 65M70 35K57 35R11 65M12 PDF BibTeX XML Cite \textit{H. G. Lee}, J. Comput. Appl. Math. 333, 395--403 (2018; Zbl 1380.65305) Full Text: DOI
Batangouna, Narcisse; Pierre, Morgan Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. (English) Zbl 1375.37167 Commun. Pure Appl. Anal. 17, No. 1, 1-19 (2018). MSC: 37L30 65M12 35B41 80A22 PDF BibTeX XML Cite \textit{N. Batangouna} and \textit{M. Pierre}, Commun. Pure Appl. Anal. 17, No. 1, 1--19 (2018; Zbl 1375.37167) Full Text: DOI
Pak, Dohyun; Han, Changkyu; Hong, Won-Tak Iterative speedup by utilizing symmetric data in pricing options with two risky assets. (English) Zbl 1412.91238 Symmetry 9, No. 1, Paper No. 12, 16 p. (2017). MSC: 91G60 91G20 65M06 PDF BibTeX XML Cite \textit{D. Pak} et al., Symmetry 9, No. 1, Paper No. 12, 16 p. (2017; Zbl 1412.91238) Full Text: DOI
Lee, Hyun Geun A semi-analytical Fourier spectral method for the Swift-Hohenberg equation. (English) Zbl 1397.65205 Comput. Math. Appl. 74, No. 8, 1885-1896 (2017). MSC: 65M70 65M12 35Q35 35C05 PDF BibTeX XML Cite \textit{H. G. Lee}, Comput. Math. Appl. 74, No. 8, 1885--1896 (2017; Zbl 1397.65205) Full Text: DOI
Mohanty, R. K.; Khurana, Gunjan A new fast numerical method based on off-step discretization for two-dimensional quasilinear hyperbolic partial differential equations. (English) Zbl 1404.65098 Int. J. Comput. Methods 14, No. 3, Article ID 1750031, 27 p. (2017). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{G. Khurana}, Int. J. Comput. Methods 14, No. 3, Article ID 1750031, 27 p. (2017; Zbl 1404.65098) Full Text: DOI
Shen, Li; Ma, Heping Semi-implicit Runge-Kutta method for ordinary differential equations. (Chinese. English summary) Zbl 1413.65276 Commun. Appl. Math. Comput. 31, No. 3, 303-315 (2017). MSC: 65L06 65L20 65L04 PDF BibTeX XML Cite \textit{L. Shen} and \textit{H. Ma}, Commun. Appl. Math. Comput. 31, No. 3, 303--315 (2017; Zbl 1413.65276) Full Text: DOI
Peng, Gang; Zhao, Jianping; Feng, Xinlong Operator-splitting method for high-dimensional parabolic equation via finite element method. (English) Zbl 1399.65264 Math. Rep., Buchar. 19(69), No. 4, 381-397 (2017). MSC: 65M60 65N12 65N15 PDF BibTeX XML Cite \textit{G. Peng} et al., Math. Rep., Buchar. 19(69), No. 4, 381--397 (2017; Zbl 1399.65264)
Shin, Jaemin; Lee, Hyun Geun; Lee, June-Yub Higher order operator splitting Fourier spectral methods for the Allen-Cahn equation. (English) Zbl 1383.65129 J. Korean Soc. Ind. Appl. Math. 21, No. 1, 1-16 (2017). MSC: 65M70 35Q35 65M12 PDF BibTeX XML Cite \textit{J. Shin} et al., J. Korean Soc. Ind. Appl. Math. 21, No. 1, 1--16 (2017; Zbl 1383.65129) Full Text: Link arXiv
Shi, Feng; Zheng, Haibiao; Cao, Yong; Li, Jingzhi; Zhao, Ren A fast numerical method for solving coupled Burgers’ equations. (English) Zbl 1383.65127 Numer. Methods Partial Differ. Equations 33, No. 6, 1823-1838 (2017). MSC: 65M60 35Q53 65M12 65F08 PDF BibTeX XML Cite \textit{F. Shi} et al., Numer. Methods Partial Differ. Equations 33, No. 6, 1823--1838 (2017; Zbl 1383.65127) Full Text: DOI
Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan Incompressible material point method for free surface flow. (English) Zbl 1378.76088 J. Comput. Phys. 330, 92-110 (2017). MSC: 76M25 76D45 PDF BibTeX XML Cite \textit{F. Zhang} et al., J. Comput. Phys. 330, 92--110 (2017; Zbl 1378.76088) Full Text: DOI
Auzinger, Winfried; Kassebacher, Thomas; Koch, Othmar; Thalhammer, Mechthild Convergence of a strang splitting finite element discretization for the Schrödinger-Poisson equation. (English) Zbl 1379.65071 ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1245-1278 (2017). Reviewer: Dana Černá (Liberec) MSC: 65M12 65M60 35Q55 65M15 PDF BibTeX XML Cite \textit{W. Auzinger} et al., ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1245--1278 (2017; Zbl 1379.65071) Full Text: DOI arXiv
Shekarpaz, S.; Azari, H. Convergence of the splitting method for inverse problems in parabolic differential equations. (English) Zbl 1371.65102 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 24, No. 4, 283-298 (2017). MSC: 65M32 35K55 35R30 65M12 PDF BibTeX XML Cite \textit{S. Shekarpaz} and \textit{H. Azari}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 24, No. 4, 283--298 (2017; Zbl 1371.65102) Full Text: Link
Weng, Zhifeng; Zhuang, Qingqu Numerical approximation of the conservative Allen-Cahn equation by operator splitting method. (English) Zbl 1373.65076 Math. Methods Appl. Sci. 40, No. 12, 4462-4480 (2017). Reviewer: Wilhelm Heinrichs (Essen) MSC: 65M70 65M12 35Q35 PDF BibTeX XML Cite \textit{Z. Weng} and \textit{Q. Zhuang}, Math. Methods Appl. Sci. 40, No. 12, 4462--4480 (2017; Zbl 1373.65076) Full Text: DOI
Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub A second-order operator splitting Fourier spectral method for models of epitaxial thin film growth. (English) Zbl 1372.35240 J. Sci. Comput. 71, No. 3, 1303-1318 (2017). MSC: 35Q35 65M12 65M70 76A20 PDF BibTeX XML Cite \textit{H. G. Lee} et al., J. Sci. Comput. 71, No. 3, 1303--1318 (2017; Zbl 1372.35240) Full Text: DOI
Zhang, Cheng; Wang, Hui; Huang, Jingfang; Wang, Cheng; Yue, Xingye A second order operator splitting numerical scheme for the “good” Boussinesq equation. (English) Zbl 1368.65203 Appl. Numer. Math. 119, 179-193 (2017). MSC: 65M70 35Q53 65M12 65M15 PDF BibTeX XML Cite \textit{C. Zhang} et al., Appl. Numer. Math. 119, 179--193 (2017; Zbl 1368.65203) Full Text: DOI
Kou, X. P.; Li, S. J. On non-ergodic convergence rate of the operator splitting method for a class of variational inequalities. (English) Zbl 1373.90164 Optim. Lett. 11, No. 1, 71-80 (2017). MSC: 90C33 PDF BibTeX XML Cite \textit{X. P. Kou} and \textit{S. J. Li}, Optim. Lett. 11, No. 1, 71--80 (2017; Zbl 1373.90164) Full Text: DOI
Xiao, Xufeng; Feng, Xinlong; Yuan, Jinyun The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. (English) Zbl 1366.65091 Discrete Contin. Dyn. Syst., Ser. B 22, No. 7, 2857-2877 (2017). MSC: 65M60 35Q35 65M15 65M12 PDF BibTeX XML Cite \textit{X. Xiao} et al., Discrete Contin. Dyn. Syst., Ser. B 22, No. 7, 2857--2877 (2017; Zbl 1366.65091) Full Text: DOI
Kadioglu, Samet Y. Analysis of the self-consistent IMEX method for tightly coupled non-linear systems. (English) Zbl 1365.65184 J. Comput. Appl. Math. 322, 148-160 (2017). MSC: 65L05 65L06 34A34 65L20 PDF BibTeX XML Cite \textit{S. Y. Kadioglu}, J. Comput. Appl. Math. 322, 148--160 (2017; Zbl 1365.65184) Full Text: DOI
Jeong, Darae; Kim, Junseok Phase-field model and its splitting numerical scheme for tissue growth. (English) Zbl 1365.65214 Appl. Numer. Math. 117, 22-35 (2017). MSC: 65M22 35Q92 65M55 PDF BibTeX XML Cite \textit{D. Jeong} and \textit{J. Kim}, Appl. Numer. Math. 117, 22--35 (2017; Zbl 1365.65214) Full Text: DOI
Mahey, Philippe; Koko, Jonas; Lenoir, Arnaud Decomposition methods for a spatial model for long-term energy pricing problem. (English) Zbl 1359.90168 Math. Methods Oper. Res. 85, No. 1, 137-153 (2017). MSC: 90C90 65K05 90C39 90-08 90B30 91B25 PDF BibTeX XML Cite \textit{P. Mahey} et al., Math. Methods Oper. Res. 85, No. 1, 137--153 (2017; Zbl 1359.90168) Full Text: DOI
Bastani, Ali Foroush; Damircheli, Davood An adaptive algorithm for solving stochastic multi-point boundary value problems. (English) Zbl 1362.65009 Numer. Algorithms 74, No. 4, 1119-1143 (2017). MSC: 65C30 60H10 60H35 35F05 34B10 65L20 PDF BibTeX XML Cite \textit{A. F. Bastani} and \textit{D. Damircheli}, Numer. Algorithms 74, No. 4, 1119--1143 (2017; Zbl 1362.65009) Full Text: DOI arXiv
Li, Xiao; Qiao, Zhonghua; Zhang, Hui Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. (English) Zbl 1368.35268 SIAM J. Numer. Anal. 55, No. 1, 265-285 (2017). Reviewer: Dimitar A. Kolev (Sofia) MSC: 35Q92 65M06 65M12 65M15 65Z05 PDF BibTeX XML Cite \textit{X. Li} et al., SIAM J. Numer. Anal. 55, No. 1, 265--285 (2017; Zbl 1368.35268) Full Text: DOI
Gücüyenen, Nurcan Strang splitting method to Benjamin-Bona-Mahony type equations: analysis and application. (English) Zbl 1357.65119 J. Comput. Appl. Math. 318, 616-623 (2017). MSC: 65M06 35Q53 65M12 PDF BibTeX XML Cite \textit{N. Gücüyenen}, J. Comput. Appl. Math. 318, 616--623 (2017; Zbl 1357.65119) Full Text: DOI
Shen, Li Over relaxed hybrid proximal extragradient algorithm and its application to several operator splitting methods. (English) Zbl 1354.49059 J. Math. Anal. Appl. 448, No. 2, 727-749 (2017). MSC: 49M20 47J25 47J22 49J53 47H04 47H05 PDF BibTeX XML Cite \textit{L. Shen}, J. Math. Anal. Appl. 448, No. 2, 727--749 (2017; Zbl 1354.49059) Full Text: DOI
Geiser, Jürgen; Hueso, José L.; Martínez, Eulalia New versions of iterative splitting methods for the momentum equation. (English) Zbl 06626254 J. Comput. Appl. Math. 309, 359-370 (2017). MSC: 35K45 35K90 47D60 65M06 65M55 PDF BibTeX XML Cite \textit{J. Geiser} et al., J. Comput. Appl. Math. 309, 359--370 (2017; Zbl 06626254) Full Text: DOI
McLaughlin, Benjamin; Peterson, Janet; Ye, Ming Stabilized reduced order models for the advection-diffusion-reaction equation using operator splitting. (English) Zbl 1443.65216 Comput. Math. Appl. 71, No. 11, 2407-2420 (2016). MSC: 65M60 65M12 35K20 35K57 PDF BibTeX XML Cite \textit{B. McLaughlin} et al., Comput. Math. Appl. 71, No. 11, 2407--2420 (2016; Zbl 1443.65216) Full Text: DOI
Siraj-ul-Islam; Zaman, Rahim A computational modeling and simulation of spatial dynamics in biological systems. (English) Zbl 07159895 Appl. Math. Modelling 40, No. 7-8, 4524-4542 (2016). MSC: 92 65 PDF BibTeX XML Cite \textit{Siraj-ul-Islam} and \textit{R. Zaman}, Appl. Math. Modelling 40, No. 7--8, 4524--4542 (2016; Zbl 07159895) Full Text: DOI
Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model. (English) Zbl 1446.65135 Appl. Math. Modelling 40, No. 2, 1315-1324 (2016). MSC: 65M70 35R11 35K57 PDF BibTeX XML Cite \textit{S. Zhai} et al., Appl. Math. Modelling 40, No. 2, 1315--1324 (2016; Zbl 1446.65135) Full Text: DOI
Çiçek, Y.; Tanoǧlu, G. Strang splitting method for Burgers-Huxley equation. (English) Zbl 1410.65206 Appl. Math. Comput. 276, 454-467 (2016). MSC: 65J08 35Q53 PDF BibTeX XML Cite \textit{Y. Çiçek} and \textit{G. Tanoǧlu}, Appl. Math. Comput. 276, 454--467 (2016; Zbl 1410.65206) Full Text: DOI
Descombes, Stéphane; Duarte, Max; Massot, Marc Operator splitting methods with error estimator and adaptive time-stepping. Application to the simulation of combustion phenomena. (English) Zbl 1378.80006 Glowinski, Roland (ed.) et al., Splitting methods in communication and imaging, science, and engineering. Cham: Springer (ISBN 978-3-319-41587-1/hbk; 978-3-319-41589-5/ebook). Scientific Computation, 627-641 (2016). Reviewer: Aleksey Syromyasov (Saransk) MSC: 80A25 35K57 65G20 65M50 65Z05 80M25 PDF BibTeX XML Cite \textit{S. Descombes} et al., in: Splitting methods in communication and imaging, science, and engineering. Cham: Springer. 627--641 (2016; Zbl 1378.80006) Full Text: DOI
Burger, M.; Sawatzky, A.; Steidl, G. First order algorithms in variational image processing. (English) Zbl 1372.65053 Glowinski, Roland (ed.) et al., Splitting methods in communication and imaging, science, and engineering. Cham: Springer (ISBN 978-3-319-41587-1/hbk; 978-3-319-41589-5/ebook). Scientific Computation, 345-407 (2016). MSC: 65D18 PDF BibTeX XML Cite \textit{M. Burger} et al., in: Splitting methods in communication and imaging, science, and engineering. Cham: Springer. 345--407 (2016; Zbl 1372.65053) Full Text: DOI
Davis, Damek; Yin, Wotao Convergence rate analysis of several splitting schemes. (English) Zbl 1372.65168 Glowinski, Roland (ed.) et al., Splitting methods in communication and imaging, science, and engineering. Cham: Springer (ISBN 978-3-319-41587-1/hbk; 978-3-319-41589-5/ebook). Scientific Computation, 115-163 (2016). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{D. Davis} and \textit{W. Yin}, in: Splitting methods in communication and imaging, science, and engineering. Cham: Springer. 115--163 (2016; Zbl 1372.65168) Full Text: DOI arXiv
Glowinski, Roland; Osher, Stanley J.; Yin, Wotao Introduction. (English) Zbl 1372.65204 Glowinski, Roland (ed.) et al., Splitting methods in communication and imaging, science, and engineering. Cham: Springer (ISBN 978-3-319-41587-1/hbk; 978-3-319-41589-5/ebook). Scientific Computation, 1-17 (2016). MSC: 65L05 34A34 65K05 90C30 PDF BibTeX XML Cite \textit{R. Glowinski} et al., in: Splitting methods in communication and imaging, science, and engineering. Cham: Springer. 1--17 (2016; Zbl 1372.65204) Full Text: DOI
Ballestra, Luca Vincenzo; Cecere, Liliana A fast numerical method to price American options under the Bates model. (English) Zbl 1357.91051 Comput. Math. Appl. 72, No. 5, 1305-1319 (2016). MSC: 91G60 65M70 91G20 60G40 PDF BibTeX XML Cite \textit{L. V. Ballestra} and \textit{L. Cecere}, Comput. Math. Appl. 72, No. 5, 1305--1319 (2016; Zbl 1357.91051) Full Text: DOI
Qing, Huan; Li, Xiao; Ji, Guanghua; Zhang, Hui Comparison of two numerical schemes for the nonlinear term in the Cahn-Hilliard equation. (Chinese. English summary) Zbl 1363.65133 J. Numer. Methods Comput. Appl. 37, No. 2, 95-115 (2016). MSC: 65M06 65M70 35Q35 65M20 65M15 PDF BibTeX XML Cite \textit{H. Qing} et al., J. Numer. Methods Comput. Appl. 37, No. 2, 95--115 (2016; Zbl 1363.65133)
Shcherbakov, Victor Radial basis function partition of unity operator splitting method for pricing multi-asset American options. (English) Zbl 1354.91169 BIT 56, No. 4, 1401-1423 (2016). MSC: 91G60 65M70 91G20 60G40 PDF BibTeX XML Cite \textit{V. Shcherbakov}, BIT 56, No. 4, 1401--1423 (2016; Zbl 1354.91169) Full Text: DOI
Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel; Gulley, Jeremy R. A split-step method to include electron-electron collisions via Monte Carlo in multiple rate equation simulations. (English) Zbl 1351.82078 J. Comput. Phys. 322, 535-546 (2016). MSC: 82C80 65C05 PDF BibTeX XML Cite \textit{K. Huthmacher} et al., J. Comput. Phys. 322, 535--546 (2016; Zbl 1351.82078) Full Text: DOI
Kulikov, Igor; Vorobyov, Eduard Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows. (English) Zbl 1349.76350 J. Comput. Phys. 317, 318-346 (2016). MSC: 76M12 65M08 76W05 85A05 85A30 PDF BibTeX XML Cite \textit{I. Kulikov} and \textit{E. Vorobyov}, J. Comput. Phys. 317, 318--346 (2016; Zbl 1349.76350) Full Text: DOI
Coonjobeharry, Radha Krishn; Tangman, Désiré Yannick; Bhuruth, Muddun A two-factor jump-diffusion model for pricing convertible bonds with default risk. (English) Zbl 1396.91723 Int. J. Theor. Appl. Finance 19, No. 6, Article ID 1650046, 26 p. (2016). MSC: 91G20 60J75 PDF BibTeX XML Cite \textit{R. K. Coonjobeharry} et al., Int. J. Theor. Appl. Finance 19, No. 6, Article ID 1650046, 26 p. (2016; Zbl 1396.91723) Full Text: DOI
Kim, Junseok; Kim, Taekkeun; Jo, Jaehyun; Choi, Yongho; Lee, Seunggyu; Hwang, Hyeongseok; Yoo, Minhyun; Jeong, Darae A practical finite difference method for the three-dimensional Black-Scholes equation. (English) Zbl 1346.91258 Eur. J. Oper. Res. 252, No. 1, 183-190 (2016). MSC: 91G60 65M06 35Q91 91G20 PDF BibTeX XML Cite \textit{J. Kim} et al., Eur. J. Oper. Res. 252, No. 1, 183--190 (2016; Zbl 1346.91258) Full Text: DOI
Chartier, Philippe; Méhats, Florian; Thalhammer, Mechthild; Zhang, Yong Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. (English) Zbl 1344.35131 Math. Comput. 85, No. 302, 2863-2885 (2016). MSC: 35Q55 34K33 37L05 35Q41 PDF BibTeX XML Cite \textit{P. Chartier} et al., Math. Comput. 85, No. 302, 2863--2885 (2016; Zbl 1344.35131) Full Text: DOI
Lakoba, Taras I. Instability of the finite-difference split-step method applied to the nonlinear Schrödinger equation. I. Standing soliton. (English) Zbl 1339.65126 Numer. Methods Partial Differ. Equations 32, No. 3, 1002-1023 (2016). MSC: 65M06 65M12 35Q55 35Q51 PDF BibTeX XML Cite \textit{T. I. Lakoba}, Numer. Methods Partial Differ. Equations 32, No. 3, 1002--1023 (2016; Zbl 1339.65126) Full Text: DOI
Spiteri, Raymond J.; Torabi Ziaratgahi, Saeed Operator splitting for the bidomain model revisited. (English) Zbl 1341.78025 J. Comput. Appl. Math. 296, 550-563 (2016). Reviewer: Roland Pulch (Greifswald) MSC: 78M20 65M15 65M60 35K57 78A70 92C50 78M10 65M06 PDF BibTeX XML Cite \textit{R. J. Spiteri} and \textit{S. Torabi Ziaratgahi}, J. Comput. Appl. Math. 296, 550--563 (2016; Zbl 1341.78025) Full Text: DOI
Deng, Lin; Zhang, Yun; Wen, Yanwei; Shan, Bin; Zhou, Huamin A fractional-step thermal lattice Boltzmann model for high Peclet number flow. (English) Zbl 1443.76169 Comput. Math. Appl. 70, No. 5, 1152-1161 (2015). MSC: 76M28 65M75 80A21 PDF BibTeX XML Cite \textit{L. Deng} et al., Comput. Math. Appl. 70, No. 5, 1152--1161 (2015; Zbl 1443.76169) Full Text: DOI
Bukač, M.; Yotov, I.; Zakerzadeh, R.; Zunino, P. Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. (English) Zbl 1423.76419 Comput. Methods Appl. Mech. Eng. 292, 138-170 (2015). MSC: 76S05 76M10 65M22 65M60 74F10 76D07 PDF BibTeX XML Cite \textit{M. Bukač} et al., Comput. Methods Appl. Mech. Eng. 292, 138--170 (2015; Zbl 1423.76419) Full Text: DOI
Lee, Hyun Geun; Lee, June-Yub A second order operator splitting method for Allen-Cahn type equations with nonlinear source terms. (English) Zbl 1400.82256 Physica A 432, 24-34 (2015). MSC: 82C80 65M70 35Q82 82D25 PDF BibTeX XML Cite \textit{H. G. Lee} and \textit{J.-Y. Lee}, Physica A 432, 24--34 (2015; Zbl 1400.82256) Full Text: DOI
Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub First and second order operator splitting methods for the phase field crystal equation. (English) Zbl 1351.74156 J. Comput. Phys. 299, 82-91 (2015). MSC: 74S20 82C80 65M06 74N05 82C26 82D25 PDF BibTeX XML Cite \textit{H. G. Lee} et al., J. Comput. Phys. 299, 82--91 (2015; Zbl 1351.74156) Full Text: DOI
Christlieb, Andrew J.; Liu, Yuan; Xu, Zhengfu High order operator splitting methods based on an integral deferred correction framework. (English) Zbl 1349.65210 J. Comput. Phys. 294, 224-242 (2015). MSC: 65L05 65M20 PDF BibTeX XML Cite \textit{A. J. Christlieb} et al., J. Comput. Phys. 294, 224--242 (2015; Zbl 1349.65210) Full Text: DOI arXiv
Ahmadian, D.; Ballestra, L. V. A numerical method to price discrete double barrier options under a constant elasticity of variance model with jump diffusion. (English) Zbl 1335.91098 Int. J. Comput. Math. 92, No. 11, 2310-2328 (2015). MSC: 91G60 65M60 65N06 65M12 35K20 35Q91 91G20 PDF BibTeX XML Cite \textit{D. Ahmadian} and \textit{L. V. Ballestra}, Int. J. Comput. Math. 92, No. 11, 2310--2328 (2015; Zbl 1335.91098) Full Text: DOI
Choi, Yongho; Jeong, Darae; Kim, Junseok; Kim, Young Rock; Lee, Seunggyu; Seo, Seungsuk; Yoo, Minhyun Robust and accurate method for the Black-Scholes equations with payoff-consistent extrapolation. (English) Zbl 1329.91137 Commun. Korean Math. Soc. 30, No. 3, 297-311 (2015). MSC: 91G60 65N06 35Q91 PDF BibTeX XML Cite \textit{Y. Choi} et al., Commun. Korean Math. Soc. 30, No. 3, 297--311 (2015; Zbl 1329.91137) Full Text: DOI