Csomós, Petra; Takács, Bálint Operator splitting for space-dependent epidemic model. (English) Zbl 07310756 Appl. Numer. Math. 159, 259-280 (2021). MSC: 65L 34A PDF BibTeX XML Cite \textit{P. Csomós} and \textit{B. Takács}, Appl. Numer. Math. 159, 259--280 (2021; Zbl 07310756) Full Text: DOI
Boen, Lynn; in ’t Hout, Karel J. Operator splitting schemes for the two-asset Merton jump-diffusion model. (English) Zbl 07305168 J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021). MSC: 35 45 PDF BibTeX XML Cite \textit{L. Boen} and \textit{K. J. in 't Hout}, J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021; Zbl 07305168) Full Text: DOI
Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong; He, Yinnian Stability and error estimate of the operator splitting method for the phase field crystal equation. (English) Zbl 07301286 J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021). MSC: 65M70 65T50 65M12 35K57 35R11 74N05 35Q74 82D80 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021; Zbl 07301286) Full Text: DOI
Lee, Chaeyoung; Kim, Hyundong; Yoon, Sungha; Kim, Sangkwon; Lee, Dongsun; Park, Jinate; Kwak, Soobin; Yang, Junxiang; Wang, Jian; Kim, Junseok An unconditionally stable scheme for the Allen-Cahn equation with high-order polynomial free energy. (English) Zbl 07299052 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021). MSC: 94A 68U 65L PDF BibTeX XML Cite \textit{C. Lee} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021; Zbl 07299052) Full Text: DOI
Presho, Michael; Hill, Michael A conservative generalized multiscale finite volume/element method for modeling two-phase flow with capillary pressure. (English) Zbl 1448.35151 J. Comput. Appl. Math. 381, Article ID 113026, 15 p. (2021). MSC: 35J25 35K10 65N30 PDF BibTeX XML Cite \textit{M. Presho} and \textit{M. Hill}, J. Comput. Appl. Math. 381, Article ID 113026, 15 p. (2021; Zbl 1448.35151) Full Text: DOI
Chen, Liang; Chang, Xiaokai; Liu, Sanyang A three-operator splitting perspective of a three-block ADMM for convex quadratic semidefinite programming and beyond. (English) Zbl 07309373 Asia-Pac. J. Oper. Res. 37, No. 4, Article ID 2040009, 30 p. (2020). MSC: 90C PDF BibTeX XML Cite \textit{L. Chen} et al., Asia-Pac. J. Oper. Res. 37, No. 4, Article ID 2040009, 30 p. (2020; Zbl 07309373) Full Text: DOI
Munafò, Alessandro; Alberti, Andrea; Pantano, Carlos; Freund, Jonathan B.; Panesi, Marco A computational model for nanosecond pulse laser-plasma interactions. (English) Zbl 07303162 J. Comput. Phys. 406, Article ID 109190, 32 p. (2020). MSC: 76M12 76X05 76N06 82C40 PDF BibTeX XML Cite \textit{A. Munafò} et al., J. Comput. Phys. 406, Article ID 109190, 32 p. (2020; Zbl 07303162) Full Text: DOI
Stellato, Bartolomeo; Banjac, Goran; Goulart, Paul; Bemporad, Alberto; Boyd, Stephen OSQP: an operator splitting solver for quadratic programs. (English) Zbl 1452.90236 Math. Program. Comput. 12, No. 4, 637-672 (2020). MSC: 90C20 65K05 65K10 90C25 90C06 90C46 90C90 PDF BibTeX XML Cite \textit{B. Stellato} et al., Math. Program. Comput. 12, No. 4, 637--672 (2020; Zbl 1452.90236) Full Text: DOI
He, Yuchen; Kang, Sung Ha; Liu, Hao Curvature regularized surface reconstruction from point clouds. (English) Zbl 07292243 SIAM J. Imaging Sci. 13, No. 4, 1834-1859 (2020). MSC: 65D18 65K10 49K20 49Q10 PDF BibTeX XML Cite \textit{Y. He} et al., SIAM J. Imaging Sci. 13, No. 4, 1834--1859 (2020; Zbl 07292243) Full Text: DOI
Moayeri, M. M.; Rad, J. A.; Parand, K. Dynamical behavior of reaction-diffusion neural networks and their synchronization arising in modeling epileptic seizure: a numerical simulation study. (English) Zbl 07271192 Comput. Math. Appl. 80, No. 8, 1887-1927 (2020). MSC: 92C32 92B20 92B25 PDF BibTeX XML Cite \textit{M. M. Moayeri} et al., Comput. Math. Appl. 80, No. 8, 1887--1927 (2020; Zbl 07271192) Full Text: DOI
Ge, Zhili; Cai, Xingju; Zhang, Xin Convergence rate analysis of an operator splitting method for solving a class of variational inequality problems. (Chinese. English summary) Zbl 07266918 J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 1, 5-12 (2020). MSC: 65K15 PDF BibTeX XML Cite \textit{Z. Ge} et al., J. Nanjing Norm. Univ., Nat. Sci. Ed. 43, No. 1, 5--12 (2020; Zbl 07266918) Full Text: DOI
Čanić, Sunčica; Galić, Marija; Muha, Boris Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction. (English) Zbl 1448.74031 Trans. Am. Math. Soc. 373, No. 9, 6621-6681 (2020). MSC: 74F10 74K25 74K10 76D05 74H20 35Q74 35Q30 65M06 PDF BibTeX XML Cite \textit{S. Čanić} et al., Trans. Am. Math. Soc. 373, No. 9, 6621--6681 (2020; Zbl 1448.74031) Full Text: DOI
Bùi, Minh N.; Combettes, Patrick L. Warped proximal iterations for monotone inclusions. (English) Zbl 07244673 J. Math. Anal. Appl. 491, No. 1, Article ID 124315, 20 p. (2020). MSC: 47 49 PDF BibTeX XML Cite \textit{M. N. Bùi} and \textit{P. L. Combettes}, J. Math. Anal. Appl. 491, No. 1, Article ID 124315, 20 p. (2020; Zbl 07244673) Full Text: DOI
Hieu, Dang Van; Vy, Le Van; Quy, Pham Kim Three-operator splitting algorithm for a class of variational inclusion problems. (English) Zbl 1440.65060 Bull. Iran. Math. Soc. 46, No. 4, 1055-1071 (2020). MSC: 65J15 47H05 47J25 47J20 91B50 PDF BibTeX XML Cite \textit{D. Van Hieu} et al., Bull. Iran. Math. Soc. 46, No. 4, 1055--1071 (2020; Zbl 1440.65060) Full Text: DOI
Suzuki, Yuya; Nuyens, Dirk Rank-1 lattices and higher-order exponential splitting for the time-dependent Schrödinger equation. (English) Zbl 07240110 Tuffin, Bruno (ed.) et al., Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the 13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing, Rennes, France, July 1–6, 2018. Cham: Springer (ISBN 978-3-030-43464-9/hbk; 978-3-030-43465-6/ebook). Springer Proceedings in Mathematics & Statistics 324, 485-502 (2020). MSC: 65C05 PDF BibTeX XML Cite \textit{Y. Suzuki} and \textit{D. Nuyens}, in: Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the 13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing, Rennes, France, July 1--6, 2018. Cham: Springer. 485--502 (2020; Zbl 07240110) Full Text: DOI
Butko, Yana A. The method of Chernoff approximation. (English) Zbl 07238029 Banasiak, Jacek (ed.) et al., Semigroups of operators – theory and applications. Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday. Cham: Springer (ISBN 978-3-030-46078-5/pbk; 978-3-030-46079-2/ebook). Springer Proceedings in Mathematics & Statistics 325, 19-46 (2020). MSC: 47 PDF BibTeX XML Cite \textit{Y. A. Butko}, in: Semigroups of operators -- theory and applications. Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 -- October 5, 2018. In honour of Jan Kisyński's 85th birthday. Cham: Springer. 19--46 (2020; Zbl 07238029) Full Text: DOI
Damiani, Leonardo Hax; Kosakowski, Georg; Glaus, Martin A.; Churakov, Sergey V. A framework for reactive transport modeling using FEniCS-Reaktoro: governing equations and benchmarking results. (English) Zbl 1439.86004 Comput. Geosci. 24, No. 3, 1071-1085 (2020). MSC: 86-08 65M60 65Y15 PDF BibTeX XML Cite \textit{L. H. Damiani} et al., Comput. Geosci. 24, No. 3, 1071--1085 (2020; Zbl 1439.86004) Full Text: DOI
Lee, Dongsun The numerical solutions for the energy-dissipative and mass-conservative Allen-Cahn equation. (English) Zbl 1446.65070 Comput. Math. Appl. 80, No. 1, 263-284 (2020). MSC: 65M06 35Q56 74N05 PDF BibTeX XML Cite \textit{D. Lee}, Comput. Math. Appl. 80, No. 1, 263--284 (2020; Zbl 1446.65070) Full Text: DOI
Dao, Minh N.; Phan, Hung M. Computing the resolvent of the sum of operators with application to best approximation problems. (English) Zbl 1445.47042 Optim. Lett. 14, No. 5, 1193-1205 (2020). MSC: 47J25 47H05 49M29 41A50 PDF BibTeX XML Cite \textit{M. N. Dao} and \textit{H. M. Phan}, Optim. Lett. 14, No. 5, 1193--1205 (2020; Zbl 1445.47042) Full Text: DOI
Malitsky, Yura; Tam, Matthew K. A forward-backward splitting method for monotone inclusions without cocoercivity. (English) Zbl 1445.47041 SIAM J. Optim. 30, No. 2, 1451-1472 (2020). MSC: 47J22 49M29 90C25 47H05 47J25 65K15 PDF BibTeX XML Cite \textit{Y. Malitsky} and \textit{M. K. Tam}, SIAM J. Optim. 30, No. 2, 1451--1472 (2020; Zbl 1445.47041) Full Text: DOI
Zhai, Shuying; Wu, Longyuan; Wang, Jingying; Weng, Zhifeng Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method. (English) Zbl 1447.65037 Numer. Algorithms 84, No. 3, 1155-1178 (2020). Reviewer: Srinivasan Natesan (Assam) MSC: 65M06 65M70 65M12 35R11 26A33 65L06 PDF BibTeX XML Cite \textit{S. Zhai} et al., Numer. Algorithms 84, No. 3, 1155--1178 (2020; Zbl 1447.65037) Full Text: DOI
Moncorgé, A.; Møyner, O.; Tchelepi, H. A.; Jenny, P. Consistent upwinding for sequential fully implicit multiscale compositional simulation. (English) Zbl 1434.76128 Comput. Geosci. 24, No. 2, 533-550 (2020). MSC: 76S05 76T30 86A05 PDF BibTeX XML Cite \textit{A. Moncorgé} et al., Comput. Geosci. 24, No. 2, 533--550 (2020; Zbl 1434.76128) Full Text: DOI
Rieger, Janosch; Tam, Matthew K. Backward-forward-reflected-backward splitting for three operator monotone inclusions. (English) Zbl 07208681 Appl. Math. Comput. 381, Article ID 125248, 9 p. (2020). MSC: 49M29 90C25 47H05 47J20 65K15 PDF BibTeX XML Cite \textit{J. Rieger} and \textit{M. K. Tam}, Appl. Math. Comput. 381, Article ID 125248, 9 p. (2020; Zbl 07208681) Full Text: DOI
Ahmed, Nauman; Ali, Mubasher; Baleanu, Dumitru; Rafiq, Muhammad; ur Rehman, Muhammad Aziz Numerical analysis of diffusive susceptible-infected-recovered epidemic model in three space dimension. (English) Zbl 1434.92006 Chaos Solitons Fractals 132, Article ID 109535, 10 p. (2020). MSC: 92-08 65N06 65N12 92D30 PDF BibTeX XML Cite \textit{N. Ahmed} et al., Chaos Solitons Fractals 132, Article ID 109535, 10 p. (2020; Zbl 1434.92006) Full Text: DOI
Zhai, Shuying; Ye, Chuanxiu; Weng, Zhifeng A fast and efficient numerical algorithm for fractional Allen-Cahn with precise nonlocal mass conservation. (English) Zbl 1447.65038 Appl. Math. Lett. 103, Article ID 106190, 8 p. (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65J15 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{S. Zhai} et al., Appl. Math. Lett. 103, Article ID 106190, 8 p. (2020; Zbl 1447.65038) Full Text: DOI
Bùi, Minh N.; Combettes, Patrick L. The Douglas-Rachford algorithm converges only weakly. (English) Zbl 1443.47058 SIAM J. Control Optim. 58, No. 2, 1118-1120 (2020). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{M. N. Bùi} and \textit{P. L. Combettes}, SIAM J. Control Optim. 58, No. 2, 1118--1120 (2020; Zbl 1443.47058) Full Text: DOI
Boen, Lynn; in ’t Hout, Karel J. Operator splitting schemes for American options under the two-asset Merton jump-diffusion model. (English) Zbl 1444.91207 Appl. Numer. Math. 153, 114-131 (2020). MSC: 91G20 60G40 35Q91 60J74 PDF BibTeX XML Cite \textit{L. Boen} and \textit{K. J. in 't Hout}, Appl. Numer. Math. 153, 114--131 (2020; Zbl 1444.91207) Full Text: DOI
Lee, Hyun Geun A new conservative Swift-Hohenberg equation and its mass conservative method. (English) Zbl 1439.35217 J. Comput. Appl. Math. 375, Article ID 112815, 10 p. (2020). MSC: 35K35 65M70 35J35 35K25 82C10 82M22 PDF BibTeX XML Cite \textit{H. G. Lee}, J. Comput. Appl. Math. 375, Article ID 112815, 10 p. (2020; Zbl 1439.35217) Full Text: DOI
Johnstone, Patrick R.; Eckstein, Jonathan Projective splitting with forward steps only requires continuity. (English) Zbl 1433.90113 Optim. Lett. 14, No. 1, 229-247 (2020). MSC: 90C25 90C48 47H05 PDF BibTeX XML Cite \textit{P. R. Johnstone} and \textit{J. Eckstein}, Optim. Lett. 14, No. 1, 229--247 (2020; Zbl 1433.90113) Full Text: DOI
Neidhardt, Hagen; Stephan, Artur; Zagrebnov, Valentin A. Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems. (English) Zbl 1450.34041 Publ. Res. Inst. Math. Sci. 56, No. 1, 83-135 (2020). Reviewer: Nikita V. Artamonov (Moskva) MSC: 34G10 47D06 47A55 PDF BibTeX XML Cite \textit{H. Neidhardt} et al., Publ. Res. Inst. Math. Sci. 56, No. 1, 83--135 (2020; Zbl 1450.34041) Full Text: DOI
Chen, Feng; Shen, Jie Stability and error analysis of operator splitting methods for American options under the Black-Scholes model. (English) Zbl 1433.91173 J. Sci. Comput. 82, No. 2, Paper No. 33, 17 p. (2020). Reviewer: George Stoica (Saint John) MSC: 91G20 60G40 PDF BibTeX XML Cite \textit{F. Chen} and \textit{J. Shen}, J. Sci. Comput. 82, No. 2, Paper No. 33, 17 p. (2020; Zbl 1433.91173) Full Text: DOI
He, Dongdong; Pan, Kejia; Hu, Hongling A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. (English) Zbl 1434.65117 Appl. Numer. Math. 151, 44-63 (2020). MSC: 65M06 35R11 35Q56 65M12 PDF BibTeX XML Cite \textit{D. He} et al., Appl. Numer. Math. 151, 44--63 (2020; Zbl 1434.65117) Full Text: DOI
Zheng, Yang; Fantuzzi, Giovanni; Papachristodoulou, Antonis; Goulart, Paul; Wynn, Andrew Chordal decomposition in operator-splitting methods for sparse semidefinite programs. (English) Zbl 1434.90126 Math. Program. 180, No. 1-2 (A), 489-532 (2020). MSC: 90C22 90C25 49M27 49M29 PDF BibTeX XML Cite \textit{Y. Zheng} et al., Math. Program. 180, No. 1--2 (A), 489--532 (2020; Zbl 1434.90126) Full Text: DOI
Yereniuk, Michael A.; Olson, Sarah D. Computational framework to capture the spatiotemporal density of cells with a cumulative environmental coupling. (English) Zbl 1432.92022 J. Comput. Appl. Math. 369, Article ID 112572, 21 p. (2020). MSC: 92C17 92D40 35Q92 92-08 PDF BibTeX XML Cite \textit{M. A. Yereniuk} and \textit{S. D. Olson}, J. Comput. Appl. Math. 369, Article ID 112572, 21 p. (2020; Zbl 1432.92022) Full Text: DOI
Hausenblas, Erika; Randrianasolo, Tsiry Avisoa; Thalhammer, Mechtild Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic gray-Scott equations. (English) Zbl 1427.60123 J. Comput. Appl. Math. 364, Article ID 112335, 27 p. (2020). MSC: 60H15 92B05 35G50 35Q92 60G57 92-08 PDF BibTeX XML Cite \textit{E. Hausenblas} et al., J. Comput. Appl. Math. 364, Article ID 112335, 27 p. (2020; Zbl 1427.60123) Full Text: DOI
Chen, Zhenzhu; Shao, Sihong; Cai, Wei A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences. (English) Zbl 1452.65270 J. Comput. Phys. 396, 54-71 (2019). MSC: 65M70 81Q05 81-08 65Z05 PDF BibTeX XML Cite \textit{Z. Chen} et al., J. Comput. Phys. 396, 54--71 (2019; Zbl 1452.65270) Full Text: DOI
Sirajuddin, David; Hitchon, William N. G. A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. (English) Zbl 1452.76162 J. Comput. Phys. 392, 619-665 (2019). MSC: 76M20 76X05 35Q83 65M06 65M12 PDF BibTeX XML Cite \textit{D. Sirajuddin} and \textit{W. N. G. Hitchon}, J. Comput. Phys. 392, 619--665 (2019; Zbl 1452.76162) Full Text: DOI
Jackson, Haran; Nikiforakis, Nikos A numerical scheme for non-Newtonian fluids and plastic solids under the GPR model. (English) Zbl 1452.76119 J. Comput. Phys. 387, 410-429 (2019). MSC: 76M12 74S10 76A05 74C05 65M08 65Z05 PDF BibTeX XML Cite \textit{H. Jackson} and \textit{N. Nikiforakis}, J. Comput. Phys. 387, 410--429 (2019; Zbl 1452.76119) Full Text: DOI
Gimenez, Juan M.; Aguerre, Horacio J.; Idelsohn, Sergio R.; Nigro, Norberto M. A second-order in time and space particle-based method to solve flow problems on arbitrary meshes. (English) Zbl 1451.76091 J. Comput. Phys. 380, 295-310 (2019). MSC: 76M28 65M75 76M12 PDF BibTeX XML Cite \textit{J. M. Gimenez} et al., J. Comput. Phys. 380, 295--310 (2019; Zbl 1451.76091) Full Text: DOI
Ryu, Ernest K.; Yin, Wotao Proximal-proximal-gradient method. (English) Zbl 07266713 J. Comput. Math. 37, No. 6, 778-812 (2019). MSC: 65K05 90C06 90C25 90C30 PDF BibTeX XML Cite \textit{E. K. Ryu} and \textit{W. Yin}, J. Comput. Math. 37, No. 6, 778--812 (2019; Zbl 07266713) Full Text: DOI
Hemami, Mohammad; Parand, Kourosh; Rad, Jamal Amani Numerical simulation of reaction-diffusion neural dynamics models and their synchronization/desynchronization: application to epileptic seizures. (English) Zbl 1443.92048 Comput. Math. Appl. 78, No. 11, 3644-3677 (2019). MSC: 92B20 92C20 65M70 PDF BibTeX XML Cite \textit{M. Hemami} et al., Comput. Math. Appl. 78, No. 11, 3644--3677 (2019; Zbl 1443.92048) Full Text: DOI
Gidey, H. H.; Reddy, B. D. Operator-splitting methods for the 2D convective Cahn-Hilliard equation. (English) Zbl 1442.65194 Comput. Math. Appl. 77, No. 12, 3128-3153 (2019). MSC: 65M08 35K35 35K59 PDF BibTeX XML Cite \textit{H. H. Gidey} and \textit{B. D. Reddy}, Comput. Math. Appl. 77, No. 12, 3128--3153 (2019; Zbl 1442.65194) Full Text: DOI
Chen, Chris; Wang, Zeqi; Yang, Yue A new operator splitting method for American options under fractional Black-Scholes models. (English) Zbl 1442.65151 Comput. Math. Appl. 77, No. 8, 2130-2144 (2019). MSC: 65M06 35R11 91G60 PDF BibTeX XML Cite \textit{C. Chen} et al., Comput. Math. Appl. 77, No. 8, 2130--2144 (2019; Zbl 1442.65151) Full Text: DOI
Zagrebnov, V. A. Product approximation of solution operators for non-autonomous Cauchy problems. (English) Zbl 07249130 Din. Sist., Simferopol’ 9(37), No. 4, 321-366 (2019). MSC: 34G10 47D06 47A55 PDF BibTeX XML Cite \textit{V. A. Zagrebnov}, Din. Sist., Simferopol' 9(37), No. 4, 321--366 (2019; Zbl 07249130)
Glowinski, Roland; Luo, Shousheng; Tai, Xue-Cheng Fast operator-splitting algorithms for variational imaging models: some recent developments. (English) Zbl 1446.94007 Kimmel, Ron (ed.) et al., Processing, analyzing and learning of images, shapes, and forms. Part 2. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 20, 191-232 (2019). MSC: 94A08 49Q10 65D18 PDF BibTeX XML Cite \textit{R. Glowinski} et al., Handb. Numer. Anal. 20, 191--232 (2019; Zbl 1446.94007) Full Text: DOI
Pozzi, Paola; Stinner, Björn Elastic flow interacting with a lateral diffusion process: the one-dimensional graph case. (English) Zbl 07208102 IMA J. Numer. Anal. 39, No. 1, 201-234 (2019). MSC: 65 PDF BibTeX XML Cite \textit{P. Pozzi} and \textit{B. Stinner}, IMA J. Numer. Anal. 39, No. 1, 201--234 (2019; Zbl 07208102) Full Text: DOI
Rastiello, Giuseppe; Riccardi, Francesco; Richard, Benjamin Discontinuity-scale path-following methods for the embedded discontinuity finite element modeling of failure in solids. (English) Zbl 1441.74272 Comput. Methods Appl. Mech. Eng. 349, 431-457 (2019). MSC: 74S05 65N30 74R10 PDF BibTeX XML Cite \textit{G. Rastiello} et al., Comput. Methods Appl. Mech. Eng. 349, 431--457 (2019; Zbl 1441.74272) Full Text: DOI
Liu, Hao; Leung, Shingyu An alternating direction explicit method for time evolution equations with applications to fractional differential equations. (English) Zbl 07187706 Methods Appl. Anal. 26, No. 3, 249-268 (2019). MSC: 65 26A33 65M06 65M12 PDF BibTeX XML Cite \textit{H. Liu} and \textit{S. Leung}, Methods Appl. Anal. 26, No. 3, 249--268 (2019; Zbl 07187706) Full Text: DOI
Kärkkäinen, Tommi; Glowinski, Roland A Douglas-Rachford method for sparse extreme learning machine. (English) Zbl 1441.90126 Methods Appl. Anal. 26, No. 3, 217-234 (2019). MSC: 90C26 PDF BibTeX XML Cite \textit{T. Kärkkäinen} and \textit{R. Glowinski}, Methods Appl. Anal. 26, No. 3, 217--234 (2019; Zbl 1441.90126) Full Text: DOI
Çelikkaya, İhsan Operator splitting method for numerical solution of modified equal width equation. (English) Zbl 1434.35141 Tbil. Math. J. 12, No. 3, 51-67 (2019). MSC: 35Q51 74J35 33F10 65M60 65M70 65D07 PDF BibTeX XML Cite \textit{İ. Çelikkaya}, Tbil. Math. J. 12, No. 3, 51--67 (2019; Zbl 1434.35141) Full Text: DOI Euclid
Kim, Daewa; Quaini, Annalisa A kinetic theory approach to model Pedestrian dynamics in bounded domains with obstacles. (English) Zbl 1434.35248 Kinet. Relat. Models 12, No. 6, 1273-1296 (2019). MSC: 35Q91 65C20 65M06 91A80 35Q20 PDF BibTeX XML Cite \textit{D. Kim} and \textit{A. Quaini}, Kinet. Relat. Models 12, No. 6, 1273--1296 (2019; Zbl 1434.35248) Full Text: DOI
Weng, Zhifeng; Zhai, Shuying; Feng, Xinlong Analysis of the operator splitting scheme for the Cahn-Hilliard equation with a viscosity term. (English) Zbl 1430.35201 Numer. Methods Partial Differ. Equations 35, No. 6, 1949-1970 (2019). MSC: 35Q35 35S05 65M20 65M70 65M06 65L06 34A30 34A34 PDF BibTeX XML Cite \textit{Z. Weng} et al., Numer. Methods Partial Differ. Equations 35, No. 6, 1949--1970 (2019; Zbl 1430.35201) Full Text: DOI
Kim, Hyundong; Lee, Chaeyoung; Lee, Jaehyun; Kim, Jaeyeon; Yu, Taeyoung; Chung, Gene; Kim, Junseok An explicit numerical algorithm for surface reconstruction from unorganized points using Gaussian filter. (English) Zbl 07161366 J. Korean Soc. Ind. Appl. Math. 23, No. 1, 31-38 (2019). MSC: 65D 94A08 PDF BibTeX XML Cite \textit{H. Kim} et al., J. Korean Soc. Ind. Appl. Math. 23, No. 1, 31--38 (2019; Zbl 07161366) Full Text: DOI
Yin, Wotao Operator splitting methods for decentralized optimization. (Chinese. English summary) Zbl 1449.68119 Math. Numer. Sin. 41, No. 3, 225-241 (2019). MSC: 68T42 93A14 93A16 PDF BibTeX XML Cite \textit{W. Yin}, Math. Numer. Sin. 41, No. 3, 225--241 (2019; Zbl 1449.68119)
Caboussat, Alexandre; Glowinski, Roland; Gourzoulidis, Dimitrios; Picasso, Marco Numerical approximation of orthogonal maps. (English) Zbl 1435.65195 SIAM J. Sci. Comput. 41, No. 6, B1341-B1367 (2019). Reviewer: Marius Ghergu (Dublin) MSC: 65N30 65K10 65D18 65N20 49M20 35F30 PDF BibTeX XML Cite \textit{A. Caboussat} et al., SIAM J. Sci. Comput. 41, No. 6, B1341--B1367 (2019; Zbl 1435.65195) Full Text: DOI
Güzel, Ismail; Adıyaman, Meltem; Somalı, S. Operator splitting methods for computation of eigenvalues of regular Sturm-Liouville problems. (English) Zbl 1438.65160 Surv. Math. Appl. 14, 261-275 (2019). MSC: 65L15 34L16 PDF BibTeX XML Cite \textit{I. Güzel} et al., Surv. Math. Appl. 14, 261--275 (2019; Zbl 1438.65160) Full Text: EMIS
Ahmed, Nauman; S. S., Tahira; Rafiq, M.; Rehman, M. A.; Ali, Mubasher; Ahmad, M. O. Positivity preserving operator splitting nonstandard finite difference methods for SEIR reaction diffusion model. (English) Zbl 1435.65117 Open Math. 17, 313-330 (2019). MSC: 65M06 65M12 92D30 PDF BibTeX XML Cite \textit{N. Ahmed} et al., Open Math. 17, 313--330 (2019; Zbl 1435.65117) Full Text: DOI
Mohanty, R. K.; Kaur, Deepti; Singh, Swarn A class of two- and three-level implicit methods of order two in time and four in space based on half-step discretization for two-dimensional fourth order quasi-linear parabolic equations. (English) Zbl 1429.65193 Appl. Math. Comput. 352, 68-87 (2019). MSC: 65M06 65M12 65M22 PDF BibTeX XML Cite \textit{R. K. Mohanty} et al., Appl. Math. Comput. 352, 68--87 (2019; Zbl 1429.65193) Full Text: DOI
Csetnek, Ernö Robert; Malitsky, Yura; Tam, Matthew K. Shadow Douglas-Rachford splitting for monotone inclusions. (English) Zbl 1447.47051 Appl. Math. Optim. 80, No. 3, 665-678 (2019). MSC: 47J25 47H05 90C25 47J22 65K15 PDF BibTeX XML Cite \textit{E. R. Csetnek} et al., Appl. Math. Optim. 80, No. 3, 665--678 (2019; Zbl 1447.47051) Full Text: DOI arXiv
Zhai, Shuying; Wang, Dongling; Weng, Zhifeng; Zhao, Xuan Error analysis and numerical simulations of Strang splitting method for space fractional nonlinear Schrödinger equation. (English) Zbl 07129384 J. Sci. Comput. 81, No. 2, 965-989 (2019). MSC: 70K75 65M70 65M12 81S40 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 81, No. 2, 965--989 (2019; Zbl 07129384) Full Text: DOI
Duong, Manh Hong; Lu, Yulong An operator splitting scheme for the fractional kinetic Fokker-Planck equation. (English) Zbl 1423.49045 Discrete Contin. Dyn. Syst. 39, No. 10, 5707-5727 (2019). MSC: 49S05 35Q84 49J40 PDF BibTeX XML Cite \textit{M. H. Duong} and \textit{Y. Lu}, Discrete Contin. Dyn. Syst. 39, No. 10, 5707--5727 (2019; Zbl 1423.49045) Full Text: DOI arXiv
Cervi, Jessica; Spiteri, Raymond J. A comparison of fourth-order operator splitting methods for cardiac simulations. (English) Zbl 07106367 Appl. Numer. Math. 145, 227-235 (2019). MSC: 65J 68W PDF BibTeX XML Cite \textit{J. Cervi} and \textit{R. J. Spiteri}, Appl. Numer. Math. 145, 227--235 (2019; Zbl 07106367) Full Text: DOI
Thomée, Vidar; Vasudeva Murthy, A. S. An explicit-implicit splitting method for a convection-diffusion problem. (English) Zbl 1420.65089 Comput. Methods Appl. Math. 19, No. 2, 283-293 (2019). MSC: 65M06 35K10 65M15 86A10 PDF BibTeX XML Cite \textit{V. Thomée} and \textit{A. S. Vasudeva Murthy}, Comput. Methods Appl. Math. 19, No. 2, 283--293 (2019; Zbl 1420.65089) Full Text: DOI
Frick, Damian; Georghiou, Angelos; Jerez, Juan L.; Domahidi, Alexander; Morari, Manfred Low-complexity method for hybrid MPC with local guarantees. (English) Zbl 1421.93049 SIAM J. Control Optim. 57, No. 4, 2328-2361 (2019). MSC: 93B40 93C30 93B28 90C30 49J52 47H09 PDF BibTeX XML Cite \textit{D. Frick} et al., SIAM J. Control Optim. 57, No. 4, 2328--2361 (2019; Zbl 1421.93049) Full Text: DOI Link arXiv
Huang, Yunqing; Yang, Wei; Wang, Hao; Cui, Jintao Adaptive operator splitting finite element method for Allen-Cahn equation. (English) Zbl 1418.65132 Numer. Methods Partial Differ. Equations 35, No. 3, 1290-1300 (2019). MSC: 65M60 65M12 65M15 65H10 65M50 PDF BibTeX XML Cite \textit{Y. Huang} et al., Numer. Methods Partial Differ. Equations 35, No. 3, 1290--1300 (2019; Zbl 1418.65132) Full Text: DOI
Beauregard, Matthew A.; Padgett, Joshua L. A variable nonlinear splitting algorithm for reaction diffusion systems with self- and cross- diffusion. (English) Zbl 1418.65095 Numer. Methods Partial Differ. Equations 35, No. 2, 597-614 (2019). MSC: 65M06 65M12 92D25 35Q92 35K57 PDF BibTeX XML Cite \textit{M. A. Beauregard} and \textit{J. L. Padgett}, Numer. Methods Partial Differ. Equations 35, No. 2, 597--614 (2019; Zbl 1418.65095) Full Text: DOI
Zürnacı, Fatma; Seydaoğlu, Muaz On the convergence of operator splitting for the Rosenau-Burgers equation. (English) Zbl 1418.65115 Numer. Methods Partial Differ. Equations 35, No. 4, 1363-1382 (2019). MSC: 65M12 65M15 65J15 35Q35 76B15 PDF BibTeX XML Cite \textit{F. Zürnacı} and \textit{M. Seydaoğlu}, Numer. Methods Partial Differ. Equations 35, No. 4, 1363--1382 (2019; Zbl 1418.65115) Full Text: DOI
Glowinski, Roland; Pan, Tsorng-Whay Two decades of wave-like equation for the numerical simulation of incompressible viscous flow: a review. (English) Zbl 1416.35005 Chetverushkin, B. N. (ed.) et al., Contributions to partial differential equations and applications. Invited papers of the conferences ‘Contributions to partial differential equations’, Université Pierre et Marie Curie, Paris, France, August 31 – September 1, 2015 and ‘Applied and computational mathematics’, University of Houston, Texas, USA, February 26–27, 2016. Cham: Springer. Comput. Methods Appl. Sci. 47, 221-250 (2019). MSC: 35-03 76-03 35Q30 35Q35 76M10 01A60 01A61 PDF BibTeX XML Cite \textit{R. Glowinski} and \textit{T.-W. Pan}, Comput. Methods Appl. Sci. 47, 221--250 (2019; Zbl 1416.35005) Full Text: DOI
Raguet, Hugo A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization. (English) Zbl 07078286 Optim. Lett. 13, No. 4, 717-740 (2019). MSC: 90C PDF BibTeX XML Cite \textit{H. Raguet}, Optim. Lett. 13, No. 4, 717--740 (2019; Zbl 07078286) Full Text: DOI arXiv
Glowinski, Roland; Liu, Hao; Leung, Shingyu; Qian, Jianliang A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge-Ampère equation. (English) Zbl 1447.65141 J. Sci. Comput. 79, No. 1, 1-47 (2019); correction ibid. 79, No. 1, 48 (2019). Reviewer: Vit Dolejsi (Praha) MSC: 65N30 65J20 35J96 PDF BibTeX XML Cite \textit{R. Glowinski} et al., J. Sci. Comput. 79, No. 1, 1--47 (2019; Zbl 1447.65141) Full Text: DOI
Pei, Chaoxu; Sussman, Mark; Hussaini, M. Yousuff New multi-implicit space-time spectral element methods for advection-diffusion-reaction problems. (English) Zbl 07063586 J. Sci. Comput. 78, No. 2, 653-686 (2019). MSC: 65B05 65M70 PDF BibTeX XML Cite \textit{C. Pei} et al., J. Sci. Comput. 78, No. 2, 653--686 (2019; Zbl 07063586) Full Text: DOI
Roberts, Michael; Chen, Ke; Irion, Klaus L. A convex geodesic selective model for image segmentation. (English) Zbl 1448.94031 J. Math. Imaging Vis. 61, No. 4, 482-503 (2019). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{M. Roberts} et al., J. Math. Imaging Vis. 61, No. 4, 482--503 (2019; Zbl 1448.94031) Full Text: DOI
Combettes, Patrick L.; Pesquet, Jean-Christophe Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: mean-square and linear convergence. (English) Zbl 07047597 Math. Program. 174, No. 1-2 (B), 433-451 (2019). MSC: 47J25 46M10 65K10 90C15 PDF BibTeX XML Cite \textit{P. L. Combettes} and \textit{J.-C. Pesquet}, Math. Program. 174, No. 1--2 (B), 433--451 (2019; Zbl 07047597) Full Text: DOI
Yi, Peng; Pavel, Lacra An operator splitting approach for distributed generalized Nash equilibria computation. (English) Zbl 1411.91031 Automatica 102, 111-121 (2019). MSC: 91A10 91B54 68W15 90B10 91-04 PDF BibTeX XML Cite \textit{P. Yi} and \textit{L. Pavel}, Automatica 102, 111--121 (2019; Zbl 1411.91031) Full Text: DOI
Chertock, Alina; Kurganov, Alexander; Lukáčová-Medviďová, Mária; Özcan, Şeyma Nur An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. (English) Zbl 1407.92027 Kinet. Relat. Models 12, No. 1, 195-216 (2019). MSC: 92C17 35Q20 35Q92 PDF BibTeX XML Cite \textit{A. Chertock} et al., Kinet. Relat. Models 12, No. 1, 195--216 (2019; Zbl 1407.92027) Full Text: DOI
Mohanty, R. K.; Khurana, Gunjan A new fast algorithm based on half-step discretization for 3D quasilinear hyperbolic partial differential equations. (English) Zbl 1404.65099 Int. J. Comput. Methods 16, No. 1, Article ID 1850090, 34 p. (2019). MSC: 65M06 65M12 35L20 35L15 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{G. Khurana}, Int. J. Comput. Methods 16, No. 1, Article ID 1850090, 34 p. (2019; Zbl 1404.65099) Full Text: DOI
Liu, H. M.; Chan, T. L. Two-component aerosol dynamic simulation using differentially weighted operator splitting Monte Carlo method. (English) Zbl 07182560 Appl. Math. Modelling 62, 237-253 (2018). MSC: 00 PDF BibTeX XML Cite \textit{H. M. Liu} and \textit{T. L. Chan}, Appl. Math. Modelling 62, 237--253 (2018; Zbl 07182560) Full Text: DOI
Uskova, N. B.; Garkavenko, G. V. The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential. (Russian. English summary) Zbl 1438.39037 Sib. Zh. Chist. Prikl. Mat. 18, No. 1, 91-106 (2018). MSC: 39A70 47A10 47B39 PDF BibTeX XML Cite \textit{N. B. Uskova} and \textit{G. V. Garkavenko}, Sib. Zh. Chist. Prikl. Mat. 18, No. 1, 91--106 (2018; Zbl 1438.39037) Full Text: MNR
Zong, Chunxiang; Tang, Yuchao; Cho, Yeol Je Convergence analysis of an inexact three-operator splitting algorithm. (English) Zbl 1423.47017 Symmetry 10, No. 11, Paper No. 563, 15 p. (2018). MSC: 47H05 47J22 47J25 47H09 PDF BibTeX XML Cite \textit{C. Zong} et al., Symmetry 10, No. 11, Paper No. 563, 15 p. (2018; Zbl 1423.47017) Full Text: DOI
Lukassen, Axel Ariaan Simulation of chemical systems with fast chemistry. (English) Zbl 1425.92001 Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.). viii, 125 p. (2018). MSC: 92-02 92E20 35K57 35Q92 65M99 PDF BibTeX XML Cite \textit{A. A. Lukassen}, Simulation of chemical systems with fast chemistry. Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.) (2018; Zbl 1425.92001) Full Text: Link
Zong, Chunxiang; Cai, Yong; Tang, Yuchao Iterative algorithms for solving projection operator onto the intersection of a finite family nonempty closed convex sets. (Chinese. English summary) Zbl 1438.65131 J. Nanchang Univ., Nat. Sci. 42, No. 4, 327-338 (2018). MSC: 65K05 90C25 PDF BibTeX XML Cite \textit{C. Zong} et al., J. Nanchang Univ., Nat. Sci. 42, No. 4, 327--338 (2018; Zbl 1438.65131) Full Text: DOI
Qiao, Yuanyang; Zhai, Shuying; Feng, Xinlong An operator splitting method for image inpainting based on the Allen-Cahn equation. (English) Zbl 1449.65033 Chin. J. Eng. Math. 35, No. 6, 722-732 (2018). MSC: 65D18 PDF BibTeX XML Cite \textit{Y. Qiao} et al., Chin. J. Eng. Math. 35, No. 6, 722--732 (2018; Zbl 1449.65033) Full Text: DOI
Peynaud, Emilie Operator splitting and discontinuous Galerkin methods for advection-reaction-diffusion problem. Application to plant root growth. (English) Zbl 1425.92136 Biomath 7, No. 2, 92-110 (2018). MSC: 92C80 92C15 65M60 PDF BibTeX XML Cite \textit{E. Peynaud}, Biomath 7, No. 2, 92--110 (2018; Zbl 1425.92136) Full Text: DOI Link
Moncorgé, A.; Tchelepi, H. A.; Jenny, P. Sequential fully implicit formulation for compositional simulation using natural variables. (English) Zbl 1415.76725 J. Comput. Phys. 371, 690-711 (2018). MSC: 76T30 76M12 76S05 PDF BibTeX XML Cite \textit{A. Moncorgé} et al., J. Comput. Phys. 371, 690--711 (2018; Zbl 1415.76725) Full Text: DOI
He, Bing-Sheng; Xu, Ming-Hua; Yuan, Xiao-Ming Block-wise ADMM with a relaxation factor for multiple-block convex programming. (English) Zbl 1424.90204 J. Oper. Res. Soc. China 6, No. 4, 485-505 (2018). MSC: 90C25 90C30 PDF BibTeX XML Cite \textit{B.-S. He} et al., J. Oper. Res. Soc. China 6, No. 4, 485--505 (2018; Zbl 1424.90204) Full Text: DOI
Cevher, Volkan; Vũ, Bằng Công; Yurtsever, Alp Stochastic forward Douglas-Rachford splitting method for monotone inclusions. (English) Zbl 07057113 Giselsson, Pontus (ed.) et al., Large-scale and distributed optimization. Contributions of the workshop, Lund, Sweden, June 14–16, 2017. Cham: Springer (ISBN 978-3-319-97477-4/pbk; 978-3-319-97478-1/ebook). Lecture Notes in Mathematics 2227, 149-179 (2018). Reviewer: Sorin-Mihai Grad (Wien) MSC: 47H05 74S60 49M29 49M27 90C25 PDF BibTeX XML Cite \textit{V. Cevher} et al., Lect. Notes Math. 2227, 149--179 (2018; Zbl 07057113) Full Text: DOI
Latafat, Puya; Patrinos, Panagiotis Primal-dual proximal algorithms for structured convex optimization: a unifying framework. (English) Zbl 1423.90183 Giselsson, Pontus (ed.) et al., Large-scale and distributed optimization. Contributions of the workshop, Lund, Sweden, June 14–16, 2017. Cham: Springer. Lect. Notes Math. 2227, 97-120 (2018). Reviewer: Sorin-Mihai Grad (Vienna) MSC: 90C25 47H05 65K05 49M29 90C46 PDF BibTeX XML Cite \textit{P. Latafat} and \textit{P. Patrinos}, Lect. Notes Math. 2227, 97--120 (2018; Zbl 1423.90183) Full Text: DOI
Çelikkaya, İhsan Operator splitting solution of equal width wave equation based on the Lie-Trotter and Strang splitting methods. (English) Zbl 1412.35293 Konuralp J. Math. 6, No. 2, 200-208 (2018). MSC: 35Q51 74J35 33F10 PDF BibTeX XML Cite \textit{İ. Çelikkaya}, Konuralp J. Math. 6, No. 2, 200--208 (2018; Zbl 1412.35293) Full Text: Link
Bokil, Vrushali A.; Sakkaplangkul, Puttha Construction and analysis of weighted sequential splitting FDTD methods for the 3D Maxwell’s equations. (English) Zbl 1412.65067 Int. J. Numer. Anal. Model. 15, No. 6, 747-784 (2018). MSC: 65M06 65M12 65Z05 78M20 35Q61 78A25 PDF BibTeX XML Cite \textit{V. A. Bokil} and \textit{P. Sakkaplangkul}, Int. J. Numer. Anal. Model. 15, No. 6, 747--784 (2018; Zbl 1412.65067) Full Text: Link
Izadi, Mohammad Split-step finite difference schemes for solving the nonlinear Fisher equation. (English) Zbl 1407.65033 J. Mahani Math. Res. Cent. 7, No. 1, 37-55 (2018). MSC: 65F05 65K05 PDF BibTeX XML Cite \textit{M. Izadi}, J. Mahani Math. Res. Cent. 7, No. 1, 37--55 (2018; Zbl 1407.65033) Full Text: DOI
Yang, Jiang; Du, Qiang; Zhang, Wei Uniform \(L^p\)-bound of the Allen-Cahn equation and its numerical discretization. (English) Zbl 1408.65076 Int. J. Numer. Anal. Model. 15, No. 1-2, 213-227 (2018). MSC: 65M70 65R20 35B50 35Q56 65M06 PDF BibTeX XML Cite \textit{J. Yang} et al., Int. J. Numer. Anal. Model. 15, No. 1--2, 213--227 (2018; Zbl 1408.65076) Full Text: Link
Csomós, Petra; Mena, Hermann Fourier-splitting method for solving hyperbolic LQR problems. (English) Zbl 1406.35449 Numer. Algebra Control Optim. 8, No. 1, 17-46 (2018). MSC: 35Q93 49J20 65M22 93B52 34H05 76B15 93C20 93C15 65T50 65F30 PDF BibTeX XML Cite \textit{P. Csomós} and \textit{H. Mena}, Numer. Algebra Control Optim. 8, No. 1, 17--46 (2018; Zbl 1406.35449) Full Text: DOI
Flohr, Robin; Rottmann-Matthes, Jens A splitting approach for freezing waves. (English) Zbl 1406.65058 Klingenberg, Christian (ed.) et al., Theory, numerics and applications of hyperbolic problems I, Aachen, Germany, August 2016. Cham: Springer (ISBN 978-3-319-91544-9/hbk; 978-3-319-91545-6/ebook). Springer Proceedings in Mathematics & Statistics 236, 539-550 (2018). MSC: 65M06 35M10 35C07 65L12 PDF BibTeX XML Cite \textit{R. Flohr} and \textit{J. Rottmann-Matthes}, in: Theory, numerics and applications of hyperbolic problems I, Aachen, Germany, August 2016. Cham: Springer. 539--550 (2018; Zbl 1406.65058) Full Text: DOI arXiv
Vidotto, Ettore; Helmig, Rainer; Schneider, Martin; Wohlmuth, Barbara Streamline method for resolving sharp fronts for complex two-phase flow in porous media. (English) Zbl 1404.86010 Comput. Geosci. 22, No. 6, 1487-1502 (2018). MSC: 86-08 PDF BibTeX XML Cite \textit{E. Vidotto} et al., Comput. Geosci. 22, No. 6, 1487--1502 (2018; Zbl 1404.86010) Full Text: DOI
Zhang, Xiao; Chung, Joseph D.; Kaplan, Carolyn R.; Oran, Elaine S. The barely implicit correction algorithm for low-Mach-number flows. (English) Zbl 1410.76314 Comput. Fluids 175, 230-245 (2018). MSC: 76M20 65M06 76Nxx PDF BibTeX XML Cite \textit{X. Zhang} et al., Comput. Fluids 175, 230--245 (2018; Zbl 1410.76314) Full Text: DOI
Dikhaminjia, Nana; Rogava, Jemal; Tsiklauri, Mikheil Construction and numerical resolution of high-order accuracy decomposition scheme for a quasi-linear evolution equation. (English) Zbl 1401.65093 Georgian Math. J. 25, No. 3, 337-348 (2018). MSC: 65M06 65M15 PDF BibTeX XML Cite \textit{N. Dikhaminjia} et al., Georgian Math. J. 25, No. 3, 337--348 (2018; Zbl 1401.65093) Full Text: DOI
Yan, Ming A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. (English) Zbl 1415.65142 J. Sci. Comput. 76, No. 3, 1698-1717 (2018). MSC: 65K05 47J25 90C25 PDF BibTeX XML Cite \textit{M. Yan}, J. Sci. Comput. 76, No. 3, 1698--1717 (2018; Zbl 1415.65142) Full Text: DOI
Mollapourasl, Reza; Haghi, Majid; Liu, Ruihua Localized kernel-based approximation for pricing financial options under regime switching jump diffusion model. (English) Zbl 1416.91404 Appl. Numer. Math. 134, 81-104 (2018). MSC: 91G60 91G20 60J75 60G40 65M06 PDF BibTeX XML Cite \textit{R. Mollapourasl} et al., Appl. Numer. Math. 134, 81--104 (2018; Zbl 1416.91404) Full Text: DOI
Faragó, István; Svantnerné Sebestyén, Gabriella Operator splitting methods for the Lotka-Volterra equations. (English) Zbl 1413.65456 Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 48, 19 p. (2018). MSC: 65P10 65L05 92D25 PDF BibTeX XML Cite \textit{I. Faragó} and \textit{G. Svantnerné Sebestyén}, Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 48, 19 p. (2018; Zbl 1413.65456) Full Text: DOI
Xiao, Xiantao; Li, Yongfeng; Wen, Zaiwen; Zhang, Liwei A regularized semi-smooth Newton method with projection steps for composite convex programs. (English) Zbl 1394.90534 J. Sci. Comput. 76, No. 1, 364-389 (2018). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Xiao} et al., J. Sci. Comput. 76, No. 1, 364--389 (2018; Zbl 1394.90534) Full Text: DOI arXiv