León, Víctor; Scárdua, Bruno A geometric-analytic study of linear differential equations of order two. (English) Zbl 07311271 Electron Res. Arch. 29, No. 2, 2101-2127 (2021). MSC: 34A05 34A25 34A30 34A26 PDF BibTeX XML Cite \textit{V. León} and \textit{B. Scárdua}, Electron Res. Arch. 29, No. 2, 2101--2127 (2021; Zbl 07311271) Full Text: DOI
Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M 35R 39A PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Jong, KumSong; Choi, HuiChol; Jang, KyongJun; Pak, SunAe A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method. (English) Zbl 07310777 Appl. Numer. Math. 160, 313-330 (2021). MSC: 65L PDF BibTeX XML Cite \textit{K. Jong} et al., Appl. Numer. Math. 160, 313--330 (2021; Zbl 07310777) Full Text: DOI
Dehbozorgi, Raziyeh; Maleknejad, Khosrow Direct operational vector scheme for first-kind nonlinear Volterra integral equations and its convergence analysis. (English) Zbl 07302524 Mediterr. J. Math. 18, No. 1, Paper No. 31, 22 p. (2021). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{R. Dehbozorgi} and \textit{K. Maleknejad}, Mediterr. J. Math. 18, No. 1, Paper No. 31, 22 p. (2021; Zbl 07302524) Full Text: DOI
Bazm, Sohrab; Hosseini, Alireza The alternative Legendre tau method for solving nonlinear multi-order fractional differential equations. (English) Zbl 07315126 J. Appl. Anal. Comput. 10, No. 2, 442-456 (2020). MSC: 34A08 34A12 34A45 33C45 PDF BibTeX XML Cite \textit{S. Bazm} and \textit{A. Hosseini}, J. Appl. Anal. Comput. 10, No. 2, 442--456 (2020; Zbl 07315126) Full Text: DOI
Borthelle, Peio; Hirschowitz, Tom; Lafont, Ambroise A cellular Howe theorem. (English) Zbl 07299475 Proceedings of the 2020 35th annual ACM/IEEE symposium on logic in computer science, LICS 2020, virtual event, July 8–11, 2020. New York, NY: Association for Computing Machinery (ACM) (ISBN 978-1-4503-7104-9). 273-286 (2020). MSC: 68 PDF BibTeX XML Cite \textit{P. Borthelle} et al., in: Proceedings of the 2020 35th annual ACM/IEEE symposium on logic in computer science, LICS 2020, virtual event, July 8--11, 2020. New York, NY: Association for Computing Machinery (ACM). 273--286 (2020; Zbl 07299475) Full Text: DOI
Zeng, Zhuang; Huang, Tianmin; Zhao, Qingqing; Xu, Ying A new ranking method and operational law of Pythagorean fuzzy numbers. (Chinese. English summary) Zbl 07295682 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 435-441 (2020). MSC: 03E72 PDF BibTeX XML Cite \textit{Z. Zeng} et al., J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 435--441 (2020; Zbl 07295682) Full Text: DOI
Kumbinarasaiah, S. A new approach for the numerical solution for nonlinear Klein-Gordon equation. (English) Zbl 07293761 S\(\vec{\text{e}}\)MA J. 77, No. 4, 435-456 (2020). MSC: 65M70 05C69 35R02 35Q53 PDF BibTeX XML Cite \textit{S. Kumbinarasaiah}, S\(\vec{\text{e}}\)MA J. 77, No. 4, 435--456 (2020; Zbl 07293761) Full Text: DOI
Mirzaee, Farshid; Samadyar, Nasrin Numerical solution of two dimensional stochastic Volterra-Fredholm integral equations via operational matrix method based on hat functions. (English) Zbl 07293750 S\(\vec{\text{e}}\)MA J. 77, No. 3, 227-241 (2020). MSC: 45F10 14F10 65M70 65G99 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{N. Samadyar}, S\(\vec{\text{e}}\)MA J. 77, No. 3, 227--241 (2020; Zbl 07293750) Full Text: DOI
Al-Smadi, Mohammed; Abu Arqub, Omar; Hadid, Samir An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative. (English) Zbl 1451.35247 Commun. Theor. Phys. 72, No. 8, Article ID 085001, 17 p. (2020). MSC: 35R11 35C10 34A25 26A33 PDF BibTeX XML Cite \textit{M. Al-Smadi} et al., Commun. Theor. Phys. 72, No. 8, Article ID 085001, 17 p. (2020; Zbl 1451.35247) Full Text: DOI
Maleknejad, Khosrow; Rashidinia, Jalil; Eftekhari, Tahereh Existence, uniqueness, and numerical solutions for two-dimensional nonlinear fractional Volterra and Fredholm integral equations in a Banach space. (English) Zbl 07291016 Comput. Appl. Math. 39, No. 4, Paper No. 271, 21 p. (2020). MSC: 26A33 33C45 65N35 PDF BibTeX XML Cite \textit{K. Maleknejad} et al., Comput. Appl. Math. 39, No. 4, Paper No. 271, 21 p. (2020; Zbl 07291016) Full Text: DOI
Petryk, M. R.; Boyko, I. V.; Khimich, O. M.; Petryk, M. M. High-performance supercomputer technologies of simulation of nanoporous feedback systems for adsorption gas purification. (English. Russian original) Zbl 07285418 Cybern. Syst. Anal. 56, No. 5, 835-847 (2020); translation from Kibern. Sist. Anal. 2020, No. 5, 174-186 (2020). MSC: 93B52 93-08 93C20 93C10 PDF BibTeX XML Cite \textit{M. R. Petryk} et al., Cybern. Syst. Anal. 56, No. 5, 835--847 (2020; Zbl 07285418); translation from Kibern. Sist. Anal. 2020, No. 5, 174--186 (2020) Full Text: DOI
Gorbachev, V. I. Average of ordinary differential equations of the second order with variable factors. (English) Zbl 07282967 Lobachevskii J. Math. 41, No. 10, 1999-2009 (2020). MSC: 34A30 34A05 34A25 34C29 PDF BibTeX XML Cite \textit{V. I. Gorbachev}, Lobachevskii J. Math. 41, No. 10, 1999--2009 (2020; Zbl 07282967) Full Text: DOI
Srivastava, Hari M.; Shah, Firdous A.; Irfan, Mohd Generalized wavelet quasilinearization method for solving population growth model of fractional order. (English) Zbl 07279018 Math. Methods Appl. Sci. 43, No. 15, 8753-8762 (2020). MSC: 92D25 42C40 26A33 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Math. Methods Appl. Sci. 43, No. 15, 8753--8762 (2020; Zbl 07279018) Full Text: DOI
Daǧadur, Ilhan; Çatal, Cumali Convergence of Nörlund and Riesz submethods of Mellin-Fourier series. (English) Zbl 07274318 J. Adv. Math. Stud. 13, No. 2, 155-162 (2020). MSC: 42A20 42A38 44A99 40C05 PDF BibTeX XML Cite \textit{I. Daǧadur} and \textit{C. Çatal}, J. Adv. Math. Stud. 13, No. 2, 155--162 (2020; Zbl 07274318) Full Text: Link
Odibat, Zaid Fractional power series solutions of fractional differential equations by using generalized Taylor series. (English) Zbl 07270312 Appl. Comput. Math. 19, No. 1, 47-58 (2020). MSC: 34A08 34A25 34C20 41A58 34A12 PDF BibTeX XML Cite \textit{Z. Odibat}, Appl. Comput. Math. 19, No. 1, 47--58 (2020; Zbl 07270312) Full Text: Link
Ali, Muhammad; Aziz, Sara; Malik, Salman A. Inverse problem for a multi-term fractional differential equation. (English) Zbl 07268203 Fract. Calc. Appl. Anal. 23, No. 3, 799-821 (2020). MSC: 26A33 80A23 65N21 65M32 33E12 42A20 PDF BibTeX XML Cite \textit{M. Ali} et al., Fract. Calc. Appl. Anal. 23, No. 3, 799--821 (2020; Zbl 07268203) Full Text: DOI
Samadyar, Nasrin; Ordokhani, Yadollah; Mirzaee, Farshid Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion. (English) Zbl 07265405 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105346, 13 p. (2020). MSC: 65C30 65R20 60H10 60G22 PDF BibTeX XML Cite \textit{N. Samadyar} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105346, 13 p. (2020; Zbl 07265405) Full Text: DOI
Zaky, Mahmoud A.; Machado, J. Tenreiro Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. (English) Zbl 1443.65257 Comput. Math. Appl. 79, No. 2, 476-488 (2020). MSC: 65M70 PDF BibTeX XML Cite \textit{M. A. Zaky} and \textit{J. T. Machado}, Comput. Math. Appl. 79, No. 2, 476--488 (2020; Zbl 1443.65257) Full Text: DOI
Ferreira, Chelo; López, José; Pérez Sinusia, Ester Analysis of singular one-dimensional linear boundary value problems using two-point Taylor expansions. (English) Zbl 07254932 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 22, 21 p. (2020). MSC: 34A25 34B05 41A58 PDF BibTeX XML Cite \textit{C. Ferreira} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 22, 21 p. (2020; Zbl 07254932) Full Text: DOI
Saray, Behzad Nemati Sparse multiscale representation of Galerkin method for solving linear-mixed Volterra-Fredholm integral equations. (English) Zbl 07248036 Math. Methods Appl. Sci. 43, No. 5, 2601-2614 (2020). MSC: 65R20 65F10 34E13 PDF BibTeX XML Cite \textit{B. N. Saray}, Math. Methods Appl. Sci. 43, No. 5, 2601--2614 (2020; Zbl 07248036) Full Text: DOI
Alhaidari, A. D. Series solution of a ten-parameter second-order differential equation with three regular singularities and one irregular singularity. (English. Russian original) Zbl 1445.81021 Theor. Math. Phys. 202, No. 1, 17-29 (2020); translation from Teor. Mat. Fiz. 202, No. 1, 20-33 (2020); correction ibid. 205, No. 1, 1391 (2020). MSC: 81Q10 34L40 34L05 33C45 34A25 PDF BibTeX XML Cite \textit{A. D. Alhaidari}, Theor. Math. Phys. 202, No. 1, 17--29 (2020; Zbl 1445.81021); translation from Teor. Mat. Fiz. 202, No. 1, 20--33 (2020); correction ibid. 205, No. 1, 1391 (2020) Full Text: DOI
Kumar, Sunil; Kumar, Ranbir; Agarwal, Ravi P.; Samet, Bessem A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. (English) Zbl 1452.65124 Math. Methods Appl. Sci. 43, No. 8, 5564-5578 (2020). MSC: 65L06 34A08 92D25 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 8, 5564--5578 (2020; Zbl 1452.65124) Full Text: DOI
Dunnimit, Patcharee; Wiwatwanich, Araya; Poltem, Duangkamol Solutions of the fractional logistics equations via the residual power series method with Adomian polynomials. (English) Zbl 1448.34016 Int. J. Math. Comput. Sci. 15, No. 3, 885-903 (2020). MSC: 34A08 34A25 PDF BibTeX XML Cite \textit{P. Dunnimit} et al., Int. J. Math. Comput. Sci. 15, No. 3, 885--903 (2020; Zbl 1448.34016) Full Text: Link
Kheirabadi, Akram; Vaziri, Asadollah Mahmoudzadeh; Effati, Sohrab Linear optimal control of time delay systems via Hermite wavelet. (English) Zbl 1443.49004 Numer. Algebra Control Optim. 10, No. 2, 143-156 (2020). MSC: 49J15 49N05 90C20 PDF BibTeX XML Cite \textit{A. Kheirabadi} et al., Numer. Algebra Control Optim. 10, No. 2, 143--156 (2020; Zbl 1443.49004) Full Text: DOI
Karimi, Akram; Maleknejad, Khosrow; Ezzati, Reza Numerical solutions of system of two-dimensional Volterra integral equations via Legendre wavelets and convergence. (English) Zbl 1441.65127 Appl. Numer. Math. 156, 228-241 (2020). MSC: 65R20 45D05 65T60 PDF BibTeX XML Cite \textit{A. Karimi} et al., Appl. Numer. Math. 156, 228--241 (2020; Zbl 1441.65127) Full Text: DOI
Kumar, Sachin; Atangana, Abdon A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment. (English) Zbl 1443.92101 Int. J. Biomath. 13, No. 3, Article ID 2050021, 17 p. (2020). MSC: 92C50 35R11 47D07 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{A. Atangana}, Int. J. Biomath. 13, No. 3, Article ID 2050021, 17 p. (2020; Zbl 1443.92101) Full Text: DOI
Morales-Delgado, Victor Fabian; Gómez-Aguilar, José Francisco; Taneco-Hernández, Marco Antonio Mathematical modeling approach to the fractional Bergman’s model. (English) Zbl 1442.34084 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 805-821 (2020). MSC: 34C60 92C50 34A08 44A10 34A25 PDF BibTeX XML Cite \textit{V. F. Morales-Delgado} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 805--821 (2020; Zbl 1442.34084) Full Text: DOI
Bazm, Sohrab; Hosseini, Alireza Bernoulli operational matrix method for the numerical solution of nonlinear two-dimensional Volterra-Fredholm integral equations of Hammerstein type. (English) Zbl 1449.65356 Comput. Appl. Math. 39, No. 2, Paper No. 49, 20 p. (2020). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{S. Bazm} and \textit{A. Hosseini}, Comput. Appl. Math. 39, No. 2, Paper No. 49, 20 p. (2020; Zbl 1449.65356) Full Text: DOI
Hanna, Latif A-M.; Al-Kandari, Maryam; Luchko, Yuri Operational method for solving fractional differential equations with the left-and right-hand sided Erdélyi-Kober fractional derivatives. (English) Zbl 1441.34009 Fract. Calc. Appl. Anal. 23, No. 1, 103-125 (2020). MSC: 34A08 34A25 26A33 44A35 33E30 45J99 45D99 PDF BibTeX XML Cite \textit{L. A M. Hanna} et al., Fract. Calc. Appl. Anal. 23, No. 1, 103--125 (2020; Zbl 1441.34009) Full Text: DOI
Saratha, S. R.; Bagyalakshmi, M.; Sai Sundara Krishnan, G. Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations. (English) Zbl 1449.65293 Comput. Appl. Math. 39, No. 2, Paper No. 112, 32 p. (2020). MSC: 65M99 35R11 34A08 34A25 35C10 35G31 PDF BibTeX XML Cite \textit{S. R. Saratha} et al., Comput. Appl. Math. 39, No. 2, Paper No. 112, 32 p. (2020; Zbl 1449.65293) Full Text: DOI
Aghili, A. Analytic solutions of fractional ODEs and PDEs. (English) Zbl 1439.35513 Asian-Eur. J. Math. 13, No. 2, Article ID 2050032, 14 p. (2020). MSC: 35R11 34A08 44A10 35Q53 PDF BibTeX XML Cite \textit{A. Aghili}, Asian-Eur. J. Math. 13, No. 2, Article ID 2050032, 14 p. (2020; Zbl 1439.35513) Full Text: DOI
Shahwan, M. J. S.; Sharif, A. M.; Bin-Saad, Maged G. Generating functions for generalized Hermite polynomials associated with parabolic cylinder functions. (English) Zbl 1435.33013 Integral Transforms Spec. Funct. 31, No. 5, 383-394 (2020). MSC: 33C45 33C80 PDF BibTeX XML Cite \textit{M. J. S. Shahwan} et al., Integral Transforms Spec. Funct. 31, No. 5, 383--394 (2020; Zbl 1435.33013) Full Text: DOI
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud An effective scheme for solving system of fractional Volterra-Fredholm integro-differential equations based on the Müntz-Legendre wavelets. (English) Zbl 1445.65051 J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020). Reviewer: S. F. Lukomskii (Saratov) MSC: 65R20 65T60 45D05 26A33 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020; Zbl 1445.65051) Full Text: DOI
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Yang, Yin; Cattani, Carlo A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations. (English) Zbl 1449.35437 Comput. Appl. Math. 39, No. 1, Paper No. 2, 21 p. (2020). MSC: 35R11 26A33 65M70 33C47 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Comput. Appl. Math. 39, No. 1, Paper No. 2, 21 p. (2020; Zbl 1449.35437) Full Text: DOI
Shahmorad, Sedaghat; Ostadzad, M. H.; Baleanu, D. A Tau-like numerical method for solving fractional delay integro-differential equations. (English) Zbl 1440.65280 Appl. Numer. Math. 151, 322-336 (2020). MSC: 65R20 65L05 65L06 65L20 26A33 PDF BibTeX XML Cite \textit{S. Shahmorad} et al., Appl. Numer. Math. 151, 322--336 (2020; Zbl 1440.65280) Full Text: DOI
Bagyalakshmi, M.; Saisundarakrishnan, G. Tarig projected differential transform method to solve fractional nonlinear partial differential equations. (English) Zbl 1431.35064 Bol. Soc. Parana. Mat. (3) 38, No. 3, 23-46 (2020). MSC: 35K55 26A33 44A99 65D15 PDF BibTeX XML Cite \textit{M. Bagyalakshmi} and \textit{G. Saisundarakrishnan}, Bol. Soc. Parana. Mat. (3) 38, No. 3, 23--46 (2020; Zbl 1431.35064) Full Text: Link
Sahlan, Monireh Nosrati Convergence of approximate solution of mixed Hammerstein type integral equations. (English) Zbl 1431.45004 Bol. Soc. Parana. Mat. (3) 38, No. 2, 61-74 (2020). MSC: 45G10 65L60 42C40 65Gxx PDF BibTeX XML Cite \textit{M. N. Sahlan}, Bol. Soc. Parana. Mat. (3) 38, No. 2, 61--74 (2020; Zbl 1431.45004) Full Text: Link
Akbarpour, Samaneh; Shidfar, Abdollah; Saberi Najafi, Hashem A shifted Chebyshev-tau method for finding a time-dependent heat source in heat equation. (English) Zbl 1449.35458 Comput. Methods Differ. Equ. 8, No. 1, 1-13 (2020). MSC: 35R30 65N21 58J35 PDF BibTeX XML Cite \textit{S. Akbarpour} et al., Comput. Methods Differ. Equ. 8, No. 1, 1--13 (2020; Zbl 1449.35458) Full Text: DOI
Rahimkhani, Parisa; Ordokhani, Yadollah Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. (English) Zbl 07126142 J. Comput. Appl. Math. 365, Article ID 112365, 15 p. (2020). MSC: 65 26 PDF BibTeX XML Cite \textit{P. Rahimkhani} and \textit{Y. Ordokhani}, J. Comput. Appl. Math. 365, Article ID 112365, 15 p. (2020; Zbl 07126142) Full Text: DOI
Behroozifar, Mahmoud; Ahmadpour, Farkhondeh A study on spectral methods for linear and nonlinear fractional differential equations. (English) Zbl 07305612 Int. J. Comput. Sci. Math. 10, No. 6, 545-556 (2019). MSC: 65L60 34A08 PDF BibTeX XML Cite \textit{M. Behroozifar} and \textit{F. Ahmadpour}, Int. J. Comput. Sci. Math. 10, No. 6, 545--556 (2019; Zbl 07305612) Full Text: DOI
Ogunrinde, R. B. Comparative study of differential transformation method (DTM) and Adomian decomposition method (ADM) for solving ordinary differential equations. (English) Zbl 07291753 J. Contemp. Appl. Math. 9, No. 1, 63-87 (2019). MSC: 34A25 PDF BibTeX XML Cite \textit{R. B. Ogunrinde}, J. Contemp. Appl. Math. 9, No. 1, 63--87 (2019; Zbl 07291753) Full Text: Link
Hassani, Hossein; Tenreiro Machado, J. A.; Naraghirad, E. Generalized shifted Chebyshev polynomials for fractional optimal control problems. (English) Zbl 07264422 Commun. Nonlinear Sci. Numer. Simul. 75, 50-61 (2019). MSC: 49J21 74G15 26A33 PDF BibTeX XML Cite \textit{H. Hassani} et al., Commun. Nonlinear Sci. Numer. Simul. 75, 50--61 (2019; Zbl 07264422) Full Text: DOI
Kumar, Sachin; Pandey, Prashant; Das, Subir; Craciun, E.-M. Numerical solution of two dimensional reaction-diffusion equation using operational matrix method based on Genocchi polynomial. I: Genocchi polynomial and operational matrix. (English) Zbl 07260042 Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 4, 393-399 (2019). MSC: 35R11 11B83 PDF BibTeX XML Cite \textit{S. Kumar} et al., Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 4, 393--399 (2019; Zbl 07260042)
Secer, Aydin; Ozdemir, Neslihan An effective computational approach based on Gegenbauer wavelets for solving the time-fractional KdV-Burgers-Kuramoto equation. (English) Zbl 07254400 Adv. Difference Equ. 2019, Paper No. 386, 19 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{A. Secer} and \textit{N. Ozdemir}, Adv. Difference Equ. 2019, Paper No. 386, 19 p. (2019; Zbl 07254400) Full Text: DOI
Lin, Kailiang; Wang, Jing An algebraic approach to solve linear differential equation with constant coefficients. (Chinese. English summary) Zbl 07234865 J. Inn. Mong. Norm. Univ., Nat. Sci. 48, No. 6, 577-582 (2019). MSC: 34 65 PDF BibTeX XML Cite \textit{K. Lin} and \textit{J. Wang}, J. Inn. Mong. Norm. Univ., Nat. Sci. 48, No. 6, 577--582 (2019; Zbl 07234865) Full Text: DOI
Li, Linna; Wang, Huan; Huang, Qundan; Tong, Qiujuan Solution of the fractional SEIR model of epidemics using residual power series method. (Chinese. English summary) Zbl 1449.34024 Math. Pract. Theory 49, No. 15, 306-317 (2019). MSC: 34A08 92D30 34A25 34C60 PDF BibTeX XML Cite \textit{L. Li} et al., Math. Pract. Theory 49, No. 15, 306--317 (2019; Zbl 1449.34024)
Malmir, Iman Novel Chebyshev wavelets algorithms for optimal control and analysis of general linear delay models. (English) Zbl 07186545 Appl. Math. Modelling 69, 621-647 (2019). MSC: 65 93 PDF BibTeX XML Cite \textit{I. Malmir}, Appl. Math. Modelling 69, 621--647 (2019; Zbl 07186545) Full Text: DOI
Adeleye, Olurotimi; Abdulkareem, Olakanla; Yinusa, Ahmed; Sobamowo, Gbeminiyi Analytical investigations of temperature effects on creep strain relaxation of biomaterials using homotopy perturbation and differential transform methods. (English) Zbl 1449.80008 J. Comput. Appl. Mech. 14, No. 1-2, 5-23 (2019). MSC: 80A19 80M99 65L06 74D10 76A10 34A25 65L99 PDF BibTeX XML Cite \textit{O. Adeleye} et al., J. Comput. Appl. Mech. 14, No. 1--2, 5--23 (2019; Zbl 1449.80008) Full Text: DOI
Hassani, H.; Machado, J. A. Tenreiro; Avazzadeh, Z. An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. (English) Zbl 1430.34005 Nonlinear Dyn. 97, No. 4, 2041-2054 (2019). MSC: 34A08 34B99 26A33 49K15 PDF BibTeX XML Cite \textit{H. Hassani} et al., Nonlinear Dyn. 97, No. 4, 2041--2054 (2019; Zbl 1430.34005) Full Text: DOI
Zhang, Jingjing; Shen, Yue; He, Jihuan Some analytical methods for singular boundary value problem in a fractal space: a review. (English) Zbl 1440.34025 Appl. Comput. Math. 18, No. 3, 225-235 (2019). MSC: 34B16 34B15 34L30 34-02 34E15 34A25 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Comput. Math. 18, No. 3, 225--235 (2019; Zbl 1440.34025) Full Text: Link
Luo, Jiongxing Homotopy analysis solution for solving boundary value problems on the second order nonlinear differential equation. (Chinese. English summary) Zbl 1449.34054 Math. Pract. Theory 49, No. 9, 253-263 (2019). MSC: 34A45 34B15 34A25 PDF BibTeX XML Cite \textit{J. Luo}, Math. Pract. Theory 49, No. 9, 253--263 (2019; Zbl 1449.34054)
Yang, Zhe; Chen, Guohai; Yang, Dixiong A recursive analytical algorithm for dynamics analysis of nonlinear oscillators based on Riemannian geometry. (Chinese. English summary) Zbl 07155682 Chin. J. Comput. Mech. 36, No. 3, 310-316 (2019). MSC: 65L 34A25 34C15 34C40 PDF BibTeX XML Cite \textit{Z. Yang} et al., Chin. J. Comput. Mech. 36, No. 3, 310--316 (2019; Zbl 07155682) Full Text: DOI
Entezari, Mahsa; Abbasbandy, Saeid; Babolian, Esmail Numerical solution of fractional partial differential equations with normalized Bernstein wavelet method. (English) Zbl 1434.65203 Appl. Appl. Math. 14, No. 2, 890-909 (2019). MSC: 65M70 35R11 65T60 PDF BibTeX XML Cite \textit{M. Entezari} et al., Appl. Appl. Math. 14, No. 2, 890--909 (2019; Zbl 1434.65203) Full Text: Link
Varin, V. P. Integration of ordinary differential equations on Riemann surfaces with unbounded precision. (English. Russian original) Zbl 1430.34015 Comput. Math. Math. Phys. 59, No. 7, 1105-1120 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 7, 1158-1173 (2019). MSC: 34A25 PDF BibTeX XML Cite \textit{V. P. Varin}, Comput. Math. Math. Phys. 59, No. 7, 1105--1120 (2019; Zbl 1430.34015); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 7, 1158--1173 (2019) Full Text: DOI
Abd-el-Malek, Mina B.; Abdelrazek, Amr; Ghazy, Mohammed; Gamal, Gehad A modified perturbation solution to the one-dimensional Bratu problem. (English) Zbl 1428.34036 Appl. Math. Comput. 354, 296-304 (2019). MSC: 34B15 34A25 PDF BibTeX XML Cite \textit{M. B. Abd-el-Malek} et al., Appl. Math. Comput. 354, 296--304 (2019; Zbl 1428.34036) Full Text: DOI
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Yang, Yin A computational method for solving variable-order fractional nonlinear diffusion-wave equation. (English) Zbl 1429.65240 Appl. Math. Comput. 352, 235-248 (2019). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Math. Comput. 352, 235--248 (2019; Zbl 1429.65240) Full Text: DOI
Mirzaee, Farshid; Samadyar, Nasrin Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order. (English) Zbl 1429.65319 Appl. Math. Comput. 344-345, 191-203 (2019). MSC: 65R20 26A33 45B05 45D05 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{N. Samadyar}, Appl. Math. Comput. 344--345, 191--203 (2019; Zbl 1429.65319) Full Text: DOI
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Haromi, Malih Farzi A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. (English) Zbl 1429.65239 Appl. Math. Comput. 341, 215-228 (2019). MSC: 65M70 35R11 65T60 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Math. Comput. 341, 215--228 (2019; Zbl 1429.65239) Full Text: DOI
Padma, S.; Hariharan, G. An efficient operational matrix method for a few nonlinear differential equations using wavelets. (English) Zbl 1429.92069 Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 144, 20 p. (2019). MSC: 92C40 42C40 34A34 PDF BibTeX XML Cite \textit{S. Padma} and \textit{G. Hariharan}, Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 144, 20 p. (2019; Zbl 1429.92069) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions. (English) Zbl 1425.65123 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3297-3321 (2019). MSC: 65M70 65M15 35R11 65M06 11B68 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3297--3321 (2019; Zbl 1425.65123) Full Text: DOI
El-Sayed, Adel A.; Agarwal, Praveen Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. (English) Zbl 1425.65124 Math. Methods Appl. Sci. 42, No. 11, 3978-3991 (2019). MSC: 65M70 42A05 42A10 42C05 34A08 PDF BibTeX XML Cite \textit{A. A. El-Sayed} and \textit{P. Agarwal}, Math. Methods Appl. Sci. 42, No. 11, 3978--3991 (2019; Zbl 1425.65124) Full Text: DOI
Chouhan, Devendra; Chandel, R. S. Numerical solution of the convection diffusion equation by the Legendre wavelet method. (English) Zbl 1438.42086 Jñānābha 49, No. 1, 26-39 (2019). MSC: 42C40 35A08 65L60 PDF BibTeX XML Cite \textit{D. Chouhan} and \textit{R. S. Chandel}, Jñānābha 49, No. 1, 26--39 (2019; Zbl 1438.42086) Full Text: Link
Reutskiy, Sergiy; Fu, Zhuo-Jia A semi-analytic method for fractional-order ordinary differential equations: testing results. (English) Zbl 1437.65068 Fract. Calc. Appl. Anal. 21, No. 6, 1598-1618 (2019). MSC: 65L05 34A08 34A25 65M70 PDF BibTeX XML Cite \textit{S. Reutskiy} and \textit{Z.-J. Fu}, Fract. Calc. Appl. Anal. 21, No. 6, 1598--1618 (2019; Zbl 1437.65068) Full Text: DOI
Kumar, Sachin; Pandey, Prashant; Das, Subir Gegenbauer wavelet operational matrix method for solving variable-order non-linear reaction-diffusion and Galilei invariant advection-diffusion equations. (English) Zbl 1438.35433 Comput. Appl. Math. 38, No. 4, Paper No. 162, 22 p. (2019). MSC: 35R11 34A08 41A10 PDF BibTeX XML Cite \textit{S. Kumar} et al., Comput. Appl. Math. 38, No. 4, Paper No. 162, 22 p. (2019; Zbl 1438.35433) Full Text: DOI
Kheirabadi, Akram; Vaziri, Asadollah Mahmoudzadeh; Effati, Sohrab Solving optimal control problem using Hermite wavelet. (English) Zbl 1428.49036 Numer. Algebra Control Optim. 9, No. 1, 101-112 (2019). MSC: 49M99 37N35 93C15 49N05 PDF BibTeX XML Cite \textit{A. Kheirabadi} et al., Numer. Algebra Control Optim. 9, No. 1, 101--112 (2019; Zbl 1428.49036) Full Text: DOI
Das, Amiya; Ghosh, Niladri Bifurcation of traveling waves and exact solutions of Kadomtsev-Petviashvili modified equal width equation with fractional temporal evolution. (English) Zbl 1438.34002 Comput. Appl. Math. 38, No. 1, Paper No. 9, 16 p. (2019). MSC: 34A05 35C07 35R11 34A25 PDF BibTeX XML Cite \textit{A. Das} and \textit{N. Ghosh}, Comput. Appl. Math. 38, No. 1, Paper No. 9, 16 p. (2019; Zbl 1438.34002) Full Text: DOI
He, Ji-Huan; Ji, Fei-Yu Taylor series solution for Lane-Emden equation. (English) Zbl 1429.34027 J. Math. Chem. 57, No. 8, 1932-1934 (2019). MSC: 34A34 34A25 34A05 PDF BibTeX XML Cite \textit{J.-H. He} and \textit{F.-Y. Ji}, J. Math. Chem. 57, No. 8, 1932--1934 (2019; Zbl 1429.34027) Full Text: DOI
Balaji, S.; Hariharan, G. An efficient operational matrix method for the numerical solutions of the fractional Bagley-Torvik equation using wavelets. (English) Zbl 1433.65143 J. Math. Chem. 57, No. 8, 1885-1901 (2019). MSC: 65L60 PDF BibTeX XML Cite \textit{S. Balaji} and \textit{G. Hariharan}, J. Math. Chem. 57, No. 8, 1885--1901 (2019; Zbl 1433.65143) Full Text: DOI
Mirzaee, Farshid; Samadyar, Nasrin; Alipour, Sahar Numerical solution of high order linear complex differential equations via complex operational matrix method. (English) Zbl 1441.65058 S\(\vec{\text{e}}\)MA J. 76, No. 1, 1-13 (2019). Reviewer: Katsuya Ishizaki (Chiba) MSC: 65L05 65L20 34M03 PDF BibTeX XML Cite \textit{F. Mirzaee} et al., S\(\vec{\text{e}}\)MA J. 76, No. 1, 1--13 (2019; Zbl 1441.65058) Full Text: DOI
Zézé, Djédjé Sylvain; Potier-Ferry, Michel; Tampango, Yannick Multi-point Taylor series to solve differential equations. (English) Zbl 1426.34026 Discrete Contin. Dyn. Syst., Ser. S 12, No. 6, 1791-1806 (2019). MSC: 34A25 34B15 65L10 PDF BibTeX XML Cite \textit{D. S. Zézé} et al., Discrete Contin. Dyn. Syst., Ser. S 12, No. 6, 1791--1806 (2019; Zbl 1426.34026) Full Text: DOI
Bazgir, Hamed; Ghazanfari, Bahman Spectral solution of fractional fourth order partial integro-differential equations. (English) Zbl 1449.45020 Comput. Methods Differ. Equ. 7, No. 2, 289-301 (2019). MSC: 45K05 PDF BibTeX XML Cite \textit{H. Bazgir} and \textit{B. Ghazanfari}, Comput. Methods Differ. Equ. 7, No. 2, 289--301 (2019; Zbl 1449.45020) Full Text: Link
Abdollahpour, Mohammad Reza; Rassias, Michael Th. Hyers-Ulam stability of hypergeometric differential equations. (English) Zbl 1421.34036 Aequationes Math. 93, No. 4, 691-698 (2019). MSC: 34D10 34A30 34A25 PDF BibTeX XML Cite \textit{M. R. Abdollahpour} and \textit{M. Th. Rassias}, Aequationes Math. 93, No. 4, 691--698 (2019; Zbl 1421.34036) Full Text: DOI
Nikooeinejad, Z.; Heydari, M. Nash equilibrium approximation of some class of stochastic differential games: a combined Chebyshev spectral collocation method with policy iteration. (English) Zbl 1418.91067 J. Comput. Appl. Math. 362, 41-54 (2019). MSC: 91A15 65M70 PDF BibTeX XML Cite \textit{Z. Nikooeinejad} and \textit{M. Heydari}, J. Comput. Appl. Math. 362, 41--54 (2019; Zbl 1418.91067) Full Text: DOI
Mirzaee, Farshid; Alipour, Sahar; Samadyar, Nasrin A numerical approach for solving weakly singular partial integro-differential equations via two-dimensional-orthonormal Bernstein polynomials with the convergence analysis. (English) Zbl 1418.65145 Numer. Methods Partial Differ. Equations 35, No. 2, 615-637 (2019). MSC: 65M70 65D25 65D30 65M12 65M15 35R09 45K05 45D05 45G15 45G05 PDF BibTeX XML Cite \textit{F. Mirzaee} et al., Numer. Methods Partial Differ. Equations 35, No. 2, 615--637 (2019; Zbl 1418.65145) Full Text: DOI
Singh, Anup; Chopra, Manish; Das, Subir Study and analysis of a two-dimensional nonconservative fractional order aerosol transport equation. (English) Zbl 1418.35369 Math. Methods Appl. Sci. 42, No. 9, 2939-2948 (2019). MSC: 35R11 35Q70 60J60 65L20 76R50 PDF BibTeX XML Cite \textit{A. Singh} et al., Math. Methods Appl. Sci. 42, No. 9, 2939--2948 (2019; Zbl 1418.35369) Full Text: DOI
Gubes, Murat A new calculation technique for the Laplace and Sumudu transforms by means of the variational iteration method. (English) Zbl 1452.44002 Math. Sci., Springer 13, No. 1, 21-25 (2019). MSC: 44A10 44A15 34A25 PDF BibTeX XML Cite \textit{M. Gubes}, Math. Sci., Springer 13, No. 1, 21--25 (2019; Zbl 1452.44002) Full Text: DOI
Ezz-Eldien, S. S.; Doha, E. H. Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. (English) Zbl 1447.65014 Numer. Algorithms 81, No. 1, 57-77 (2019). Reviewer: Kai Diethelm (Schweinfurt) MSC: 65L60 33C45 45J05 PDF BibTeX XML Cite \textit{S. S. Ezz-Eldien} and \textit{E. H. Doha}, Numer. Algorithms 81, No. 1, 57--77 (2019; Zbl 1447.65014) Full Text: DOI
Jaiswal, Shubham; Das, S. Numerical solution of linear/nonlinear fractional order differential equations using Jacobi operational matrix. (English) Zbl 1411.65101 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 42, 21 p. (2019). MSC: 65L60 34A08 PDF BibTeX XML Cite \textit{S. Jaiswal} and \textit{S. Das}, Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 42, 21 p. (2019; Zbl 1411.65101) Full Text: DOI
Mohammadi, Fakhrodin; Hassani, Hossein Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. (English) Zbl 1409.49029 J. Optim. Theory Appl. 180, No. 2, 536-555 (2019). MSC: 49M30 35Q35 49J20 41A58 49J21 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{H. Hassani}, J. Optim. Theory Appl. 180, No. 2, 536--555 (2019; Zbl 1409.49029) Full Text: DOI
Hosseinpour, Soleiman; Nazemi, Alireza; Tohidi, Emran Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems. (English) Zbl 07007578 J. Comput. Appl. Math. 351, 344-363 (2019). MSC: 65 49 PDF BibTeX XML Cite \textit{S. Hosseinpour} et al., J. Comput. Appl. Math. 351, 344--363 (2019; Zbl 07007578) Full Text: DOI
Heydari, M. H.; Mahmoudi, M. R.; Shakiba, A.; Avazzadeh, Z. Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion. (English) Zbl 07265263 Commun. Nonlinear Sci. Numer. Simul. 64, 98-121 (2018). MSC: 60G 60H PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Commun. Nonlinear Sci. Numer. Simul. 64, 98--121 (2018; Zbl 07265263) Full Text: DOI
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T. A new operational approach for solving fractional variational problems depending on indefinite integrals. (English) Zbl 07263284 Commun. Nonlinear Sci. Numer. Simul. 57, 246-263 (2018). MSC: 34A08 65M70 33C45 PDF BibTeX XML Cite \textit{S. S. Ezz-Eldien} et al., Commun. Nonlinear Sci. Numer. Simul. 57, 246--263 (2018; Zbl 07263284) Full Text: DOI
Delkhosh, Mehdi; Parand, Kourosh Numerical solution of the nonlinear integro-differential equations of multi-arbitrary order. (English) Zbl 07246034 Thai J. Math. 16, No. 2, 471-488 (2018). MSC: 65R20 45J05 45B05 45G10 34K37 PDF BibTeX XML Cite \textit{M. Delkhosh} and \textit{K. Parand}, Thai J. Math. 16, No. 2, 471--488 (2018; Zbl 07246034) Full Text: Link
Sun, Jianshe Analytical approximate solutions of \((n + 1)\)-dimensional fractal Harry Dym equations. (English) Zbl 1433.26008 Fractals 26, No. 6, Article ID 1850094, 15 p. (2018). MSC: 26A33 44A99 28A80 PDF BibTeX XML Cite \textit{J. Sun}, Fractals 26, No. 6, Article ID 1850094, 15 p. (2018; Zbl 1433.26008) Full Text: DOI
El-Gindy, T. M.; Ahmed, H. F.; Melad, Marina B. Shifted Gegenbauer operational matrix and its applications for solving fractional differential equations. (English) Zbl 1436.65078 J. Egypt. Math. Soc. 26, 72-90 (2018). MSC: 65L03 34A08 26A33 PDF BibTeX XML Cite \textit{T. M. El-Gindy} et al., J. Egypt. Math. Soc. 26, 72--90 (2018; Zbl 1436.65078) Full Text: DOI
Bashir, Tariq; Kalim, Muhammad Solution of non-homogeneous differential equations using Faddeev-LeVerrier method together with Laplace transform. (English) Zbl 1430.34016 Adv. Differ. Equ. Control Process. 19, No. 4, 343-357 (2018). MSC: 34A30 34A05 34A25 PDF BibTeX XML Cite \textit{T. Bashir} and \textit{M. Kalim}, Adv. Differ. Equ. Control Process. 19, No. 4, 343--357 (2018; Zbl 1430.34016) Full Text: DOI
Tanriverdi, Tanfer; Ağırağaç, Nermin Differential transform applied to certain ODE. (English) Zbl 1430.34014 Adv. Differ. Equ. Control Process. 19, No. 3, 213-235 (2018). MSC: 34A25 34A12 34B15 PDF BibTeX XML Cite \textit{T. Tanriverdi} and \textit{N. Ağırağaç}, Adv. Differ. Equ. Control Process. 19, No. 3, 213--235 (2018; Zbl 1430.34014) Full Text: DOI
Zhu, Shuai; Xie, Jiaquan; Wu, Shiyue Legendre function method for solving fractional-order partial differential equations. (Chinese. English summary) Zbl 1438.65213 Chin. J. Eng. Math. 35, No. 5, 570-578 (2018). MSC: 65M22 26A33 35R11 PDF BibTeX XML Cite \textit{S. Zhu} et al., Chin. J. Eng. Math. 35, No. 5, 570--578 (2018; Zbl 1438.65213) Full Text: DOI
Jin, Yuanfeng; Chol, Choehui; Ae, Paksun; Song, Jongkum; Lu, Gang Numerical methods for solving initial value problems of some kinds of nonlinear impulsive fractional differential equations. (English) Zbl 1438.65147 J. Nonlinear Sci. Appl. 11, No. 10, 1129-1148 (2018). MSC: 65L05 34A37 34H05 65L20 PDF BibTeX XML Cite \textit{Y. Jin} et al., J. Nonlinear Sci. Appl. 11, No. 10, 1129--1148 (2018; Zbl 1438.65147) Full Text: DOI
Zogheib, Bashar; Tohidi, Emran Modal Hermite spectral collocation method for solving multi-dimensional hyperbolic telegraph equations. (English) Zbl 1419.65086 Comput. Math. Appl. 75, No. 10, 3571-3588 (2018). MSC: 65M70 65M22 35L20 65F05 PDF BibTeX XML Cite \textit{B. Zogheib} and \textit{E. Tohidi}, Comput. Math. Appl. 75, No. 10, 3571--3588 (2018; Zbl 1419.65086) Full Text: DOI
Semary, Mourad S.; Hassan, Hany N.; Radwan, Ahmed G. Modified methods for solving two classes of distributed order linear fractional differential equations. (English) Zbl 1426.65117 Appl. Math. Comput. 323, 106-119 (2018). MSC: 65L60 34A08 65L05 PDF BibTeX XML Cite \textit{M. S. Semary} et al., Appl. Math. Comput. 323, 106--119 (2018; Zbl 1426.65117) Full Text: DOI
Petryk, M.; Boyko, I.; Petryk, O.; Fraissard, J. Modelling of adsorption and desorption of hydrocarbons in nanoporous catalytic zelite media using nonlinear Langmuir isotherm. (English) Zbl 1424.76043 Bukovyn. Mat. Zh. 6, No. 3-4, 107-117 (2018). MSC: 76S05 PDF BibTeX XML Cite \textit{M. Petryk} et al., Bukovyn. Mat. Zh. 6, No. 3--4, 107--117 (2018; Zbl 1424.76043) Full Text: Link
Yüzbaşi, Şuayip; Ismailov, Nurbol An operational matrix method for solving linear Fredholm-Volterra integro-differential equations. (English) Zbl 1424.65260 Turk. J. Math. 42, No. 1, 243-256 (2018). MSC: 65R20 45J05 45B05 45D05 PDF BibTeX XML Cite \textit{Ş. Yüzbaşi} and \textit{N. Ismailov}, Turk. J. Math. 42, No. 1, 243--256 (2018; Zbl 1424.65260) Full Text: DOI
Rahimkhani, Parisa; Ordokhani, Yadollah Application of Müntz-Legendre polynomials for solving the Bagley-Torvik equation in a large interval. (English) Zbl 1412.34040 S\(\vec{\text{e}}\)MA J. 75, No. 3, 517-533 (2018). MSC: 34A08 41A10 34A45 34A30 PDF BibTeX XML Cite \textit{P. Rahimkhani} and \textit{Y. Ordokhani}, S\(\vec{\text{e}}\)MA J. 75, No. 3, 517--533 (2018; Zbl 1412.34040) Full Text: DOI
Saeedi, Habibollah A fractional-order operational method for numerical treatment of multi-order fractional partial differential equation with variable coefficients. (English) Zbl 1417.65212 S\(\vec{\text{e}}\)MA J. 75, No. 3, 421-433 (2018). Reviewer: Hendrik Ranocha (Braunschweig) MSC: 65N35 35R11 65M70 PDF BibTeX XML Cite \textit{H. Saeedi}, S\(\vec{\text{e}}\)MA J. 75, No. 3, 421--433 (2018; Zbl 1417.65212) Full Text: DOI
Singh, Somveer; Patel, Vijay Kumar; Singh, Vineet Kumar; Tohidi, Emran Application of Bernoulli matrix method for solving two-dimensional hyperbolic telegraph equations with Dirichlet boundary conditions. (English) Zbl 1409.65078 Comput. Math. Appl. 75, No. 7, 2280-2294 (2018). MSC: 65M70 35L20 PDF BibTeX XML Cite \textit{S. Singh} et al., Comput. Math. Appl. 75, No. 7, 2280--2294 (2018; Zbl 1409.65078) Full Text: DOI
Aghili, Arman Operational methods for sub-ballistic and coupled fractional PDEs. (English) Zbl 1415.35271 Konuralp J. Math. 6, No. 1, 42-48 (2018). MSC: 35R11 44A10 PDF BibTeX XML Cite \textit{A. Aghili}, Konuralp J. Math. 6, No. 1, 42--48 (2018; Zbl 1415.35271) Full Text: Link
Parand, Kourosh; Delkhosh, Mehdi System of nonlinear Volterra integro-differential equations of arbitrary order. (English) Zbl 1424.45012 Bol. Soc. Parana. Mat. (3) 36, No. 4, 33-54 (2018). MSC: 45G15 45D05 26A33 65L60 45J05 PDF BibTeX XML Cite \textit{K. Parand} and \textit{M. Delkhosh}, Bol. Soc. Parana. Mat. (3) 36, No. 4, 33--54 (2018; Zbl 1424.45012) Full Text: Link
Pourghanbar, Somayeh; Ranjbar, Mojtaba A new approximation method to solve boundary value problems by using functional perturbation concepts. (English) Zbl 1424.65113 Bol. Soc. Parana. Mat. (3) 36, No. 3, 9-25 (2018). MSC: 65L10 34A25 41A58 PDF BibTeX XML Cite \textit{S. Pourghanbar} and \textit{M. Ranjbar}, Bol. Soc. Parana. Mat. (3) 36, No. 3, 9--25 (2018; Zbl 1424.65113) Full Text: Link