Srivastava, Nikhil; Singh, Aman; Kumar, Yashveer; Singh, Vineet Kumar Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. (English) Zbl 07310817 Appl. Numer. Math. 161, 244-274 (2021). MSC: 65M 35R 39A PDF BibTeX XML Cite \textit{N. Srivastava} et al., Appl. Numer. Math. 161, 244--274 (2021; Zbl 07310817) Full Text: DOI
Jong, KumSong; Choi, HuiChol; Jang, KyongJun; Pak, SunAe A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method. (English) Zbl 07310777 Appl. Numer. Math. 160, 313-330 (2021). MSC: 65L PDF BibTeX XML Cite \textit{K. Jong} et al., Appl. Numer. Math. 160, 313--330 (2021; Zbl 07310777) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Solving fractional Volterra integro-differential equations by using alternative Legendre functions. (English) Zbl 07302968 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 1, 1-14 (2021). MSC: 45J05 26A33 35C11 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 1, 1--14 (2021; Zbl 07302968) Full Text: Link
Kosunalp, Hatice Yalman; Gülsu, Mustafa Operational matrix by Hermite polynomials for solving nonlinear Riccati differential equations. (English) Zbl 07293306 Int. J. Math. Comput. Sci. 16, No. 2, 525-536 (2021). MSC: 65L05 34A08 PDF BibTeX XML Cite \textit{H. Y. Kosunalp} and \textit{M. Gülsu}, Int. J. Math. Comput. Sci. 16, No. 2, 525--536 (2021; Zbl 07293306) Full Text: Link
Bazm, Sohrab; Hosseini, Alireza The alternative Legendre tau method for solving nonlinear multi-order fractional differential equations. (English) Zbl 07315126 J. Appl. Anal. Comput. 10, No. 2, 442-456 (2020). MSC: 26A33 05E35 33C45 44A45 PDF BibTeX XML Cite \textit{S. Bazm} and \textit{A. Hosseini}, J. Appl. Anal. Comput. 10, No. 2, 442--456 (2020; Zbl 07315126) Full Text: DOI
Safavi, M.; Banar, J.; Khajehnasiri, A. A. Application of Legendre operational matrix to solution of two dimensional non-linear Volterra integro-differential equation. (English) Zbl 07314451 Casp. J. Math. Sci. 9, No. 2, 321-339 (2020). MSC: 45G10 65R20 PDF BibTeX XML Cite \textit{M. Safavi} et al., Casp. J. Math. Sci. 9, No. 2, 321--339 (2020; Zbl 07314451) Full Text: DOI
Razaghzadeh, N.; Mohseni, Moghadam M.; Saeedi, H. A spectral fractional order method for solving nonlinear weakly singular Volterra integral equations. (English) Zbl 07314121 Malays. J. Math. Sci. 14, No. 3, 543-564 (2020). MSC: 65 26 PDF BibTeX XML Cite \textit{N. Razaghzadeh} et al., Malays. J. Math. Sci. 14, No. 3, 543--564 (2020; Zbl 07314121) Full Text: Link
Derakhshan, M. H.; Aminataei, A. A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative. (English) Zbl 07298603 J. Linear Topol. Algebra 9, No. 4, 267-280 (2020). MSC: 65L60 26A33 34K06 PDF BibTeX XML Cite \textit{M. H. Derakhshan} and \textit{A. Aminataei}, J. Linear Topol. Algebra 9, No. 4, 267--280 (2020; Zbl 07298603) Full Text: Link
Kumbinarasaiah, S. A new approach for the numerical solution for nonlinear Klein-Gordon equation. (English) Zbl 07293761 S\(\vec{\text{e}}\)MA J. 77, No. 4, 435-456 (2020). MSC: 65M70 05C69 35R02 35Q53 PDF BibTeX XML Cite \textit{S. Kumbinarasaiah}, S\(\vec{\text{e}}\)MA J. 77, No. 4, 435--456 (2020; Zbl 07293761) Full Text: DOI
El-Gamel, Mohamed; El-Hady, Mahmoud Abd Novel efficient collocation method for Sturm-Liouville problems with nonlocal integral boundary conditions. (English) Zbl 07293758 S\(\vec{\text{e}}\)MA J. 77, No. 4, 375-388 (2020). MSC: 65 34B24 PDF BibTeX XML Cite \textit{M. El-Gamel} and \textit{M. A. El-Hady}, S\(\vec{\text{e}}\)MA J. 77, No. 4, 375--388 (2020; Zbl 07293758) Full Text: DOI
Mirzaee, Farshid; Samadyar, Nasrin Numerical solution of two dimensional stochastic Volterra-Fredholm integral equations via operational matrix method based on hat functions. (English) Zbl 07293750 S\(\vec{\text{e}}\)MA J. 77, No. 3, 227-241 (2020). MSC: 45F10 14F10 65M70 65G99 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{N. Samadyar}, S\(\vec{\text{e}}\)MA J. 77, No. 3, 227--241 (2020; Zbl 07293750) Full Text: DOI
Sayevand, Khosro; Machado, J. Tenreiro; Masti, Iman On dual Bernstein polynomials and stochastic fractional integro-differential equations. (English) Zbl 07292713 Math. Methods Appl. Sci. 43, No. 17, 9928-9947 (2020). MSC: 60H20 65R20 45D05 PDF BibTeX XML Cite \textit{K. Sayevand} et al., Math. Methods Appl. Sci. 43, No. 17, 9928--9947 (2020; Zbl 07292713) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations. (English) Zbl 07291004 Comput. Appl. Math. 39, No. 4, Paper No. 259, 32 p. (2020). MSC: 26A33 33F05 35R09 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Comput. Appl. Math. 39, No. 4, Paper No. 259, 32 p. (2020; Zbl 07291004) Full Text: DOI
Dixit, Sandeep An efficient algorithm for numerical inversion of system of generalized Abel integral equations. (English) Zbl 07288680 Appl. Appl. Math. 15, No. 2, 1275-1290 (2020). MSC: 65R20 26A33 41A10 45A05 PDF BibTeX XML Cite \textit{S. Dixit}, Appl. Appl. Math. 15, No. 2, 1275--1290 (2020; Zbl 07288680) Full Text: Link
Ganji, Roghayeh Moallem; Jafari, Hossein A new approach for solving nonlinear Volterra integro-differential equations with Mittag-Leffler kernel. (English) Zbl 07285035 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 46, No. 1, 144-158 (2020). MSC: 65L05 65R20 45J05 26A33 PDF BibTeX XML Cite \textit{R. M. Ganji} and \textit{H. Jafari}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 46, No. 1, 144--158 (2020; Zbl 07285035) Full Text: DOI
Daǧadur, Ilhan; Çatal, Cumali Convergence of Nörlund and Riesz submethods of Mellin-Fourier series. (English) Zbl 07274318 J. Adv. Math. Stud. 13, No. 2, 155-162 (2020). MSC: 42A20 42A38 44A99 40C05 PDF BibTeX XML Cite \textit{I. Daǧadur} and \textit{C. Çatal}, J. Adv. Math. Stud. 13, No. 2, 155--162 (2020; Zbl 07274318) Full Text: Link
Mishra, Vinod; Rani, Dimple Laplace transform inversion using Bernstein operational matrix of integration and its application to differential and integral equations. (English) Zbl 07271357 Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 60, 28 p. (2020). Reviewer: Nikhil Khanna (New Delhi) MSC: 44A10 65R10 40A25 PDF BibTeX XML Cite \textit{V. Mishra} and \textit{D. Rani}, Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 60, 28 p. (2020; Zbl 07271357) Full Text: DOI
Zhu, Shuai; Zhu, Shixin Legendre wavelet method for numerically solving nonlinear system of Volterra integro-differential equations. (Chinese. English summary) Zbl 07267302 Math. Pract. Theory 49, No. 24, 202-207 (2020). MSC: 65T60 65R20 PDF BibTeX XML Cite \textit{S. Zhu} and \textit{S. Zhu}, Math. Pract. Theory 49, No. 24, 202--207 (2020; Zbl 07267302)
Samadyar, Nasrin; Ordokhani, Yadollah; Mirzaee, Farshid Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion. (English) Zbl 07265405 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105346, 13 p. (2020). MSC: 65C30 65R20 60H10 60G22 PDF BibTeX XML Cite \textit{N. Samadyar} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105346, 13 p. (2020; Zbl 07265405) Full Text: DOI
Esmaeilifar, Leili; Mirza, Behrouz; Mohammadzadeh, Hosein Relativistic quantum information of anyons. (English) Zbl 1451.81385 Int. J. Theor. Phys. 59, No. 10, 3289-3298 (2020). MSC: 81V27 81P45 81P40 81R20 81P16 81V72 60G22 81P42 81P17 PDF BibTeX XML Cite \textit{L. Esmaeilifar} et al., Int. J. Theor. Phys. 59, No. 10, 3289--3298 (2020; Zbl 1451.81385) Full Text: DOI
Hassani, Hossein; Tenreiro Machado, J. A.; Avazzadeh, Zakieh; Naraghirad, E. Generalized shifted Chebyshev polynomials: solving a general class of nonlinear variable order fractional PDE. (English) Zbl 1450.35267 Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105229, 11 p. (2020). MSC: 35R11 74G15 41A10 30E25 35A35 65M12 PDF BibTeX XML Cite \textit{H. Hassani} et al., Commun. Nonlinear Sci. Numer. Simul. 85, Article ID 105229, 11 p. (2020; Zbl 1450.35267) Full Text: DOI
Zaky, Mahmoud A.; Machado, J. Tenreiro Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. (English) Zbl 1443.65257 Comput. Math. Appl. 79, No. 2, 476-488 (2020). MSC: 65M70 PDF BibTeX XML Cite \textit{M. A. Zaky} and \textit{J. T. Machado}, Comput. Math. Appl. 79, No. 2, 476--488 (2020; Zbl 1443.65257) Full Text: DOI
Hussain, Khawlah H. Alternative Legendre functions for solving nonlinear fractional Fredholm integro-differential equations. (English) Zbl 07249073 Nonlinear Dyn. Syst. Theory 20, No. 1, 61-71 (2020). MSC: 45J05 26A33 35C11 PDF BibTeX XML Cite \textit{K. H. Hussain}, Nonlinear Dyn. Syst. Theory 20, No. 1, 61--71 (2020; Zbl 07249073) Full Text: Link
Saray, Behzad Nemati Sparse multiscale representation of Galerkin method for solving linear-mixed Volterra-Fredholm integral equations. (English) Zbl 07248036 Math. Methods Appl. Sci. 43, No. 5, 2601-2614 (2020). MSC: 65R20 65F10 34E13 PDF BibTeX XML Cite \textit{B. N. Saray}, Math. Methods Appl. Sci. 43, No. 5, 2601--2614 (2020; Zbl 07248036) Full Text: DOI
Moghadam, Abolfazl Soltanpour; Arabameri, Maryam; Baleanu, Dumitru; Barfeie, Mahdiar Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative. (English) Zbl 07242859 Math. Methods Appl. Sci. 43, No. 7, 3936-3953 (2020). MSC: 65T60 35R11 26A33 11B68 PDF BibTeX XML Cite \textit{A. S. Moghadam} et al., Math. Methods Appl. Sci. 43, No. 7, 3936--3953 (2020; Zbl 07242859) Full Text: DOI
El-Ajou, Ahmad; Oqielat, Moa’ath N.; Al-Zhour, Zeyad; Momani, Shaher A class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique. (English) Zbl 1451.34007 Fract. Calc. Appl. Anal. 23, No. 2, 356-377 (2020). MSC: 34A08 26A33 34A05 34A25 34A30 PDF BibTeX XML Cite \textit{A. El-Ajou} et al., Fract. Calc. Appl. Anal. 23, No. 2, 356--377 (2020; Zbl 1451.34007) Full Text: DOI
Alhaidari, A. D. Series solution of a ten-parameter second-order differential equation with three regular singularities and one irregular singularity. (English. Russian original) Zbl 1445.81021 Theor. Math. Phys. 202, No. 1, 17-29 (2020); translation from Teor. Mat. Fiz. 202, No. 1, 20-33 (2020); correction ibid. 205, No. 1, 1391 (2020). MSC: 81Q10 34L40 34L05 33C45 34A25 PDF BibTeX XML Cite \textit{A. D. Alhaidari}, Theor. Math. Phys. 202, No. 1, 17--29 (2020; Zbl 1445.81021); translation from Teor. Mat. Fiz. 202, No. 1, 20--33 (2020); correction ibid. 205, No. 1, 1391 (2020) Full Text: DOI
Kumar, Sunil; Kumar, Ranbir; Agarwal, Ravi P.; Samet, Bessem A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. (English) Zbl 1452.65124 Math. Methods Appl. Sci. 43, No. 8, 5564-5578 (2020). MSC: 65L06 34A08 92D25 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 8, 5564--5578 (2020; Zbl 1452.65124) Full Text: DOI
Kheirabadi, Akram; Vaziri, Asadollah Mahmoudzadeh; Effati, Sohrab Linear optimal control of time delay systems via Hermite wavelet. (English) Zbl 1443.49004 Numer. Algebra Control Optim. 10, No. 2, 143-156 (2020). MSC: 49J15 49N05 90C20 PDF BibTeX XML Cite \textit{A. Kheirabadi} et al., Numer. Algebra Control Optim. 10, No. 2, 143--156 (2020; Zbl 1443.49004) Full Text: DOI
Jena, Mahendra Kumar; Sahu, Kshama Sagar Haar wavelet: history and its applications. (English) Zbl 1442.42077 Manna, Santanu (ed.) et al., Mathematical modelling and scientific computing with applications. Proceedings of the international conference, ICMMSC 2018, Indore, India, July 19–21, 2018. Singapore: Springer. Springer Proc. Math. Stat. 308, 149-157 (2020). MSC: 42C40 42-03 PDF BibTeX XML Cite \textit{M. K. Jena} and \textit{K. S. Sahu}, Springer Proc. Math. Stat. 308, 149--157 (2020; Zbl 1442.42077) Full Text: DOI
Yaghoobnia, A. R.; Ezzati, R. Using Bernstein multi-scaling polynomials to obtain numerical solution of Volterra integral equations system. (English) Zbl 1449.65371 Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020). MSC: 65R20 45D05 45G15 41A58 PDF BibTeX XML Cite \textit{A. R. Yaghoobnia} and \textit{R. Ezzati}, Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020; Zbl 1449.65371) Full Text: DOI
Zenchuk, A. I. Operations with elements of transferred density matrix via unitary transformations on extended receiver. (English) Zbl 1441.81047 Int. J. Quantum Inf. 18, No. 3, Article ID 2050007, 19 p. (2020). MSC: 81P48 82B20 81P15 81P16 PDF BibTeX XML Cite \textit{A. I. Zenchuk}, Int. J. Quantum Inf. 18, No. 3, Article ID 2050007, 19 p. (2020; Zbl 1441.81047) Full Text: DOI
Karimi, Akram; Maleknejad, Khosrow; Ezzati, Reza Numerical solutions of system of two-dimensional Volterra integral equations via Legendre wavelets and convergence. (English) Zbl 1441.65127 Appl. Numer. Math. 156, 228-241 (2020). MSC: 65R20 45D05 65T60 PDF BibTeX XML Cite \textit{A. Karimi} et al., Appl. Numer. Math. 156, 228--241 (2020; Zbl 1441.65127) Full Text: DOI
Carollo, Angelo; Valenti, Davide; Spagnolo, Bernardo Geometry of quantum phase transitions. (English) Zbl 1442.81031 Phys. Rep. 838, 1-72 (2020). Reviewer: Piotr Garbaczewski (Opole) MSC: 81Q70 81P16 81V74 81P45 82B26 82C26 82B10 82C10 53Z05 PDF BibTeX XML Cite \textit{A. Carollo} et al., Phys. Rep. 838, 1--72 (2020; Zbl 1442.81031) Full Text: DOI
Ganji, R. M.; Jafari, H.; Nemati, S. A new approach for solving integro-differential equations of variable order. (English) Zbl 1450.45005 J. Comput. Appl. Math. 379, Article ID 112946, 12 p. (2020). MSC: 45J05 65R20 PDF BibTeX XML Cite \textit{R. M. Ganji} et al., J. Comput. Appl. Math. 379, Article ID 112946, 12 p. (2020; Zbl 1450.45005) Full Text: DOI
Nam, Phan Thành; Rougerie, Nicolas Improved stability for 2D attractive Bose gases. (English) Zbl 1439.81099 J. Math. Phys. 61, No. 2, 021901, 8 p. (2020). MSC: 81V73 81P16 81P15 35Q55 81Q10 82D05 PDF BibTeX XML Cite \textit{P. T. Nam} and \textit{N. Rougerie}, J. Math. Phys. 61, No. 2, 021901, 8 p. (2020; Zbl 1439.81099) Full Text: DOI
Kumar, Sachin; Atangana, Abdon A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment. (English) Zbl 1443.92101 Int. J. Biomath. 13, No. 3, Article ID 2050021, 17 p. (2020). MSC: 92C50 35R11 47D07 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{A. Atangana}, Int. J. Biomath. 13, No. 3, Article ID 2050021, 17 p. (2020; Zbl 1443.92101) Full Text: DOI
Bazm, Sohrab; Hosseini, Alireza Bernoulli operational matrix method for the numerical solution of nonlinear two-dimensional Volterra-Fredholm integral equations of Hammerstein type. (English) Zbl 1449.65356 Comput. Appl. Math. 39, No. 2, Paper No. 49, 20 p. (2020). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{S. Bazm} and \textit{A. Hosseini}, Comput. Appl. Math. 39, No. 2, Paper No. 49, 20 p. (2020; Zbl 1449.65356) Full Text: DOI
Hassani, H.; Machado, J. A. Tenreiro; Naraghirad, E. An efficient numerical technique for variable order time fractional nonlinear Klein-Gordon equation. (English) Zbl 1446.65127 Appl. Numer. Math. 154, 260-272 (2020). MSC: 65M70 65M12 35R11 PDF BibTeX XML Cite \textit{H. Hassani} et al., Appl. Numer. Math. 154, 260--272 (2020; Zbl 1446.65127) Full Text: DOI
Heydari, M. H. A computational method for a class of systems of nonlinear variable-order fractional quadratic integral equations. (English) Zbl 1433.65351 Appl. Numer. Math. 153, 164-178 (2020). MSC: 65R20 PDF BibTeX XML Cite \textit{M. H. Heydari}, Appl. Numer. Math. 153, 164--178 (2020; Zbl 1433.65351) Full Text: DOI
Heydari, Mohammad Hossein; Hooshmandasl, Mohammad Reza; Cattani, Carlo Wavelets method for solving nonlinear stochastic Itô-Volterra integral equations. (English) Zbl 07188075 Georgian Math. J. 27, No. 1, 81-95 (2020). MSC: 60H20 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Georgian Math. J. 27, No. 1, 81--95 (2020; Zbl 07188075) Full Text: DOI
Sabermahani, Sedigheh; Ordokhani, Yadollah; Yousefi, Sohrab-Ali Two-dimensional Müntz-Legendre hybrid functions: theory and applications for solving fractional-order partial differential equations. (English) Zbl 1449.65278 Comput. Appl. Math. 39, No. 2, Paper No. 111, 22 p. (2020). MSC: 65M70 65N35 35R11 26A33 65H10 42C10 PDF BibTeX XML Cite \textit{S. Sabermahani} et al., Comput. Appl. Math. 39, No. 2, Paper No. 111, 22 p. (2020; Zbl 1449.65278) Full Text: DOI
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud An effective scheme for solving system of fractional Volterra-Fredholm integro-differential equations based on the Müntz-Legendre wavelets. (English) Zbl 1445.65051 J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020). Reviewer: S. F. Lukomskii (Saratov) MSC: 65R20 65T60 45D05 26A33 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020; Zbl 1445.65051) Full Text: DOI
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Yang, Yin; Cattani, Carlo A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations. (English) Zbl 1449.35437 Comput. Appl. Math. 39, No. 1, Paper No. 2, 21 p. (2020). MSC: 35R11 26A33 65M70 33C47 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Comput. Appl. Math. 39, No. 1, Paper No. 2, 21 p. (2020; Zbl 1449.35437) Full Text: DOI
Sabermahani, Sedigheh; Ordokhani, Yadollah; Yousefi, Sohrab Ali Fractional-order general Lagrange scaling functions and their applications. (English) Zbl 1443.44003 BIT 60, No. 1, 101-128 (2020). MSC: 44A10 26A33 34A08 34K37 65L60 PDF BibTeX XML Cite \textit{S. Sabermahani} et al., BIT 60, No. 1, 101--128 (2020; Zbl 1443.44003) Full Text: DOI
Shahmorad, Sedaghat; Ostadzad, M. H.; Baleanu, D. A Tau-like numerical method for solving fractional delay integro-differential equations. (English) Zbl 1440.65280 Appl. Numer. Math. 151, 322-336 (2020). MSC: 65R20 65L05 65L06 65L20 26A33 PDF BibTeX XML Cite \textit{S. Shahmorad} et al., Appl. Numer. Math. 151, 322--336 (2020; Zbl 1440.65280) Full Text: DOI
Heydari, M. H. Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative. (English) Zbl 1433.49045 Appl. Numer. Math. 150, 507-518 (2020). Reviewer: Kai Diethelm (Schweinfurt) MSC: 49M25 65K10 26A33 34A25 34A08 PDF BibTeX XML Cite \textit{M. H. Heydari}, Appl. Numer. Math. 150, 507--518 (2020; Zbl 1433.49045) Full Text: DOI
Seyedi, Nasibeh; Saeedi, Habibollah Operational shifted hybrid Gegenbauer functions method for solving multi-term time fractional differential equations. (English) Zbl 1431.35012 Bol. Soc. Parana. Mat. (3) 38, No. 4, 97-110 (2020). MSC: 35B40 35L70 PDF BibTeX XML Cite \textit{N. Seyedi} and \textit{H. Saeedi}, Bol. Soc. Parana. Mat. (3) 38, No. 4, 97--110 (2020; Zbl 1431.35012) Full Text: Link
Ran, Shi-Ju; Tirrito, Emanuele; Peng, Cheng; Chen, Xi; Tagliacozzo, Luca; Su, Gang; Lewenstein, Maciej Tensor network contractions. Methods and applications to quantum many-body systems. (English) Zbl 1442.81003 Lecture Notes in Physics 964. Cham: Springer (ISBN 978-3-030-34488-7/pbk; 978-3-030-34489-4/ebook). xiv, 150 p., open access (2020). Reviewer: Hong-Hao Tu (Dresden) MSC: 81-02 82-02 81V70 81T32 81P40 81P16 81T17 82C20 82C22 82C28 PDF BibTeX XML Cite \textit{S.-J. Ran} et al., Tensor network contractions. Methods and applications to quantum many-body systems. Cham: Springer (2020; Zbl 1442.81003) Full Text: DOI
Akbarpour, Samaneh; Shidfar, Abdollah; Saberi Najafi, Hashem A shifted Chebyshev-tau method for finding a time-dependent heat source in heat equation. (English) Zbl 1449.35458 Comput. Methods Differ. Equ. 8, No. 1, 1-13 (2020). MSC: 35R30 65N21 58J35 PDF BibTeX XML Cite \textit{S. Akbarpour} et al., Comput. Methods Differ. Equ. 8, No. 1, 1--13 (2020; Zbl 1449.35458) Full Text: DOI
Shehata, Ayman A note on Konhauser matrix polynomials. (English) Zbl 1430.33005 Palest. J. Math. 9, No. 1, 549-556 (2020). MSC: 33C45 15A60 PDF BibTeX XML Cite \textit{A. Shehata}, Palest. J. Math. 9, No. 1, 549--556 (2020; Zbl 1430.33005) Full Text: Link
Ghomanjani, Fateme Numerical solution for singularly perturbed differential equation via operational matrix based on Genocchi polynomials. (English) Zbl 1433.34018 Palest. J. Math. 9, No. 1, 159-163 (2020). MSC: 34A25 34A30 34E15 34B15 65L11 PDF BibTeX XML Cite \textit{F. Ghomanjani}, Palest. J. Math. 9, No. 1, 159--163 (2020; Zbl 1433.34018) Full Text: Link
Usman, M.; Hamid, M.; Zubair, T.; Haq, R. U.; Wang, W.; Liu, M. B. Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials. (English) Zbl 1433.65152 Appl. Math. Comput. 372, Article ID 124985, 17 p. (2020). MSC: 65L99 34A08 PDF BibTeX XML Cite \textit{M. Usman} et al., Appl. Math. Comput. 372, Article ID 124985, 17 p. (2020; Zbl 1433.65152) Full Text: DOI
Behera, S.; Ray, S. Saha An operational matrix based scheme for numerical solutions of nonlinear weakly singular partial integro-differential equations. (English) Zbl 1433.65365 Appl. Math. Comput. 367, Article ID 124771, 18 p. (2020). MSC: 65T60 65R20 11B68 35R09 45J05 45D05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. S. Ray}, Appl. Math. Comput. 367, Article ID 124771, 18 p. (2020; Zbl 1433.65365) Full Text: DOI
Ray, S. Saha; Behera, S. Two-dimensional wavelets operational method for solving Volterra weakly singular partial integro-differential equations. (English) Zbl 1425.65213 J. Comput. Appl. Math. 366, Article ID 112411, 29 p. (2020). MSC: 65R20 35R09 11B68 PDF BibTeX XML Cite \textit{S. S. Ray} and \textit{S. Behera}, J. Comput. Appl. Math. 366, Article ID 112411, 29 p. (2020; Zbl 1425.65213) Full Text: DOI
Rahimkhani, Parisa; Ordokhani, Yadollah Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. (English) Zbl 07126142 J. Comput. Appl. Math. 365, Article ID 112365, 15 p. (2020). MSC: 65 26 PDF BibTeX XML Cite \textit{P. Rahimkhani} and \textit{Y. Ordokhani}, J. Comput. Appl. Math. 365, Article ID 112365, 15 p. (2020; Zbl 07126142) Full Text: DOI
Behroozifar, Mahmoud; Ahmadpour, Farkhondeh A study on spectral methods for linear and nonlinear fractional differential equations. (English) Zbl 07305612 Int. J. Comput. Sci. Math. 10, No. 6, 545-556 (2019). MSC: 65L60 34A08 PDF BibTeX XML Cite \textit{M. Behroozifar} and \textit{F. Ahmadpour}, Int. J. Comput. Sci. Math. 10, No. 6, 545--556 (2019; Zbl 07305612) Full Text: DOI
Farhana binti Ismail, Noratiqah; Phang, Chang Numerical solution for a class of fractional variational problem via second order B-spline function. (English) Zbl 07289190 J. Indones. Math. Soc. 25, No. 3, 171-182 (2019). MSC: 49M05 49J40 45P05 PDF BibTeX XML Cite \textit{N. Farhana binti Ismail} and \textit{C. Phang}, J. Indones. Math. Soc. 25, No. 3, 171--182 (2019; Zbl 07289190) Full Text: DOI
Wang, Jinbin; Ma, Lifeng; Xie, Jiaquan; Guo, Rong Block pulse operational matrix method for solving the time-fractional convection diffusion equations with variable coefficients. (English) Zbl 07267460 Numer. Math., Nanjing 41, No. 4, 346-357 (2019). MSC: 65F30 65M99 PDF BibTeX XML Cite \textit{J. Wang} et al., Numer. Math., Nanjing 41, No. 4, 346--357 (2019; Zbl 07267460)
Baghani, Omid Solving state feedback control of fractional linear quadratic regulator systems using triangular functions. (English) Zbl 07264787 Commun. Nonlinear Sci. Numer. Simul. 73, 319-337 (2019). MSC: 49N05 26A33 49M05 PDF BibTeX XML Cite \textit{O. Baghani}, Commun. Nonlinear Sci. Numer. Simul. 73, 319--337 (2019; Zbl 07264787) Full Text: DOI
Nemati, Somayeh; Lima, Pedro M.; Torres, Delfim F. M. A numerical approach for solving fractional optimal control problems using modified hat functions. (English) Zbl 07264478 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104849, 14 p. (2019). MSC: 26A33 34A08 49M05 PDF BibTeX XML Cite \textit{S. Nemati} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104849, 14 p. (2019; Zbl 07264478) Full Text: DOI
Hassani, Hossein; Tenreiro Machado, J. A.; Naraghirad, E. Generalized shifted Chebyshev polynomials for fractional optimal control problems. (English) Zbl 07264422 Commun. Nonlinear Sci. Numer. Simul. 75, 50-61 (2019). MSC: 49J21 74G15 26A33 PDF BibTeX XML Cite \textit{H. Hassani} et al., Commun. Nonlinear Sci. Numer. Simul. 75, 50--61 (2019; Zbl 07264422) Full Text: DOI
Kumar, Sachin; Pandey, Prashant; Das, Subir; Craciun, E.-M. Numerical solution of two dimensional reaction-diffusion equation using operational matrix method based on Genocchi polynomial. I: Genocchi polynomial and operational matrix. (English) Zbl 07260042 Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 4, 393-399 (2019). MSC: 35R11 11B83 PDF BibTeX XML Cite \textit{S. Kumar} et al., Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 4, 393--399 (2019; Zbl 07260042)
Secer, Aydin; Ozdemir, Neslihan An effective computational approach based on Gegenbauer wavelets for solving the time-fractional KdV-Burgers-Kuramoto equation. (English) Zbl 07254400 Adv. Difference Equ. 2019, Paper No. 386, 19 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{A. Secer} and \textit{N. Ozdemir}, Adv. Difference Equ. 2019, Paper No. 386, 19 p. (2019; Zbl 07254400) Full Text: DOI
Wang, Junxia Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on block pulse functions. (Chinese. English summary) Zbl 1449.65369 Math. Pract. Theory 49, No. 19, 269-276 (2019). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{J. Wang}, Math. Pract. Theory 49, No. 19, 269--276 (2019; Zbl 1449.65369)
Sang, Xiaoyan; Jiang, Guo; Wu, Jieheng; Lu, Yiyang Numerical solution of nonlinear stochastic Itô-Volterra integral equations by block pulse functions. (English) Zbl 1449.65008 Math. Appl. 32, No. 4, 935-946 (2019). MSC: 65C30 65R20 PDF BibTeX XML Cite \textit{X. Sang} et al., Math. Appl. 32, No. 4, 935--946 (2019; Zbl 1449.65008)
Hegedűs, Árpád On the finite volume expectation values of local operators in the sine-Gordon model. (English) Zbl 1448.81425 Nucl. Phys., B 948, Article ID 114749, 52 p. (2019). Reviewer: Alex B. Gaina (Chisinau) MSC: 81T10 35Q55 81R20 81Q10 81P16 15A15 81U05 PDF BibTeX XML Cite \textit{Á. Hegedűs}, Nucl. Phys., B 948, Article ID 114749, 52 p. (2019; Zbl 1448.81425) Full Text: DOI
Youssri, Y. H.; Hafez, R. M. Exponential Jacobi spectral method for hyperbolic partial differential equations. (English) Zbl 1452.35088 Math. Sci., Springer 13, No. 4, 347-354 (2019). MSC: 35L04 65M70 PDF BibTeX XML Cite \textit{Y. H. Youssri} and \textit{R. M. Hafez}, Math. Sci., Springer 13, No. 4, 347--354 (2019; Zbl 1452.35088) Full Text: DOI
Malmir, Iman Novel Chebyshev wavelets algorithms for optimal control and analysis of general linear delay models. (English) Zbl 07186545 Appl. Math. Modelling 69, 621-647 (2019). MSC: 65 93 PDF BibTeX XML Cite \textit{I. Malmir}, Appl. Math. Modelling 69, 621--647 (2019; Zbl 07186545) Full Text: DOI
Yasmin, Ghazala; Wani, Shahid Ahmad; Islahi, Hibah Finding hybrid families of special matrix polynomials associated with Sheffer sequences. (English) Zbl 1435.33014 Tbil. Math. J. 12, No. 4, 43-59 (2019). MSC: 33C45 33E20 PDF BibTeX XML Cite \textit{G. Yasmin} et al., Tbil. Math. J. 12, No. 4, 43--59 (2019; Zbl 1435.33014) Full Text: DOI Euclid
Moradi, L.; Mohammadi, F.; Conte, D. A discrete orthogonal polynomials approach for coupled systems of nonlinear fractional order integro-differential equations. (English) Zbl 1437.65243 Tbil. Math. J. 12, No. 3, 21-38 (2019). MSC: 65R20 65L03 45J05 33C45 PDF BibTeX XML Cite \textit{L. Moradi} et al., Tbil. Math. J. 12, No. 3, 21--38 (2019; Zbl 1437.65243) Full Text: DOI Euclid
Balachandar, S. Raja; Venkatesh, S. G.; Ayyaswamy, K.; Balasubramanian, K.; Krishnaveni, K. An approximation scheme for the numerical solution of HIV infection of CD4\(^+\) T-cells using Chebyshev wavelets. (English) Zbl 1434.92007 Proc. Jangjeon Math. Soc. 22, No. 4, 565-576 (2019). MSC: 92-08 65T60 92C50 PDF BibTeX XML Cite \textit{S. R. Balachandar} et al., Proc. Jangjeon Math. Soc. 22, No. 4, 565--576 (2019; Zbl 1434.92007) Full Text: DOI
Hassani, H.; Machado, J. A. Tenreiro; Avazzadeh, Z. An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. (English) Zbl 1430.34005 Nonlinear Dyn. 97, No. 4, 2041-2054 (2019). MSC: 34A08 34B99 26A33 49K15 PDF BibTeX XML Cite \textit{H. Hassani} et al., Nonlinear Dyn. 97, No. 4, 2041--2054 (2019; Zbl 1430.34005) Full Text: DOI
Cheraghi Tofigh, A. A.; Ezzati, R. Introducing a new approach to solve nonlinear Volterra-Fredholm integral equations. (English) Zbl 1442.45001 TWMS J. Pure Appl. Math. 10, No. 2, 175-187 (2019). MSC: 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{A. A. Cheraghi Tofigh} and \textit{R. Ezzati}, TWMS J. Pure Appl. Math. 10, No. 2, 175--187 (2019; Zbl 1442.45001) Full Text: Link
Avazzadeh, Zakieh; Hassani, Hossein Transcendental Bernstein series for solving reaction-diffusion equations with nonlocal boundary conditions through the optimization technique. (English) Zbl 1431.65184 Numer. Methods Partial Differ. Equations 35, No. 6, 2258-2274 (2019). MSC: 65K10 35K57 PDF BibTeX XML Cite \textit{Z. Avazzadeh} and \textit{H. Hassani}, Numer. Methods Partial Differ. Equations 35, No. 6, 2258--2274 (2019; Zbl 1431.65184) Full Text: DOI
Hassani, Hossein; Avazzadeh, Zakieh Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems. (English) Zbl 1433.49044 Appl. Math. Comput. 362, Article ID 124563, 10 p. (2019). MSC: 49M25 34A08 49K15 PDF BibTeX XML Cite \textit{H. Hassani} and \textit{Z. Avazzadeh}, Appl. Math. Comput. 362, Article ID 124563, 10 p. (2019; Zbl 1433.49044) Full Text: DOI
Pang, S. Y.; Muniandy, S. V.; Kamali, M. Z. M. Critical dynamics of transverse-field quantum Ising model using finite-size scaling and matrix product states. (English) Zbl 1447.81227 Int. J. Theor. Phys. 58, No. 12, 4139-4151 (2019). MSC: 81V70 82B20 82B26 81P16 82B28 35B33 81R25 35P05 82B30 PDF BibTeX XML Cite \textit{S. Y. Pang} et al., Int. J. Theor. Phys. 58, No. 12, 4139--4151 (2019; Zbl 1447.81227) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay. (English) Zbl 07144924 Numer. Linear Algebra Appl. 26, No. 5, e2259, 29 p. (2019). MSC: 65L20 65N12 65T60 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Numer. Linear Algebra Appl. 26, No. 5, e2259, 29 p. (2019; Zbl 07144924) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen Fractional-order Bessel functions with various applications. (English) Zbl 07144731 Appl. Math., Praha 64, No. 6, 637-662 (2019). MSC: 34A08 65M70 65L70 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Appl. Math., Praha 64, No. 6, 637--662 (2019; Zbl 07144731) Full Text: DOI
Chen, Yongxin; Georgiou, Tryphon T.; Tannenbaum, Allen Interpolation of matrices and matrix-valued densities: the unbalanced case. (English) Zbl 1429.81039 Eur. J. Appl. Math. 30, No. 3, 458-480 (2019). MSC: 81S22 81P45 53D22 81P16 94A17 PDF BibTeX XML Cite \textit{Y. Chen} et al., Eur. J. Appl. Math. 30, No. 3, 458--480 (2019; Zbl 1429.81039) Full Text: DOI
Pourbabaee, Marzieh; Saadatmandi, Abbas A novel Legendre operational matrix for distributed order fractional differential equations. (English) Zbl 1428.34021 Appl. Math. Comput. 361, 215-231 (2019). MSC: 34A08 34A25 PDF BibTeX XML Cite \textit{M. Pourbabaee} and \textit{A. Saadatmandi}, Appl. Math. Comput. 361, 215--231 (2019; Zbl 1428.34021) Full Text: DOI
Sahlan, M. Nosrati Four computational approaches for solving a class of boundary value problems arising in chemical reactor industry. (English) Zbl 1429.65173 Appl. Math. Comput. 355, 253-268 (2019). MSC: 65L60 34B15 45B05 45D05 65L10 92E20 PDF BibTeX XML Cite \textit{M. N. Sahlan}, Appl. Math. Comput. 355, 253--268 (2019; Zbl 1429.65173) Full Text: DOI
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Yang, Yin A computational method for solving variable-order fractional nonlinear diffusion-wave equation. (English) Zbl 1429.65240 Appl. Math. Comput. 352, 235-248 (2019). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Math. Comput. 352, 235--248 (2019; Zbl 1429.65240) Full Text: DOI
Keshavarz, E.; Ordokhani, Y.; Razzaghi, M. The Bernoulli wavelets operational matrix of integration and its applications for the solution of linear and nonlinear problems in calculus of variations. (English) Zbl 1428.42071 Appl. Math. Comput. 351, 83-98 (2019). MSC: 42C40 65T60 PDF BibTeX XML Cite \textit{E. Keshavarz} et al., Appl. Math. Comput. 351, 83--98 (2019; Zbl 1428.42071) Full Text: DOI
Mirzaee, Farshid; Samadyar, Nasrin Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order. (English) Zbl 1429.65319 Appl. Math. Comput. 344-345, 191-203 (2019). MSC: 65R20 26A33 45B05 45D05 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{N. Samadyar}, Appl. Math. Comput. 344--345, 191--203 (2019; Zbl 1429.65319) Full Text: DOI
Heydari, Mohammad Hossein; Avazzadeh, Zakieh; Haromi, Malih Farzi A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. (English) Zbl 1429.65239 Appl. Math. Comput. 341, 215-228 (2019). MSC: 65M70 35R11 65T60 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Appl. Math. Comput. 341, 215--228 (2019; Zbl 1429.65239) Full Text: DOI
Singh, Mithilesh; Singhal, Shivani; Handa, Nidhi Exact and numerical solution of Abel integral equations by orthonormal Bernoulli polynomials. (English) Zbl 07127961 Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 153, 10 p. (2019). MSC: 33C47 05A15 42C05 PDF BibTeX XML Cite \textit{M. Singh} et al., Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 153, 10 p. (2019; Zbl 07127961) Full Text: DOI
Padma, S.; Hariharan, G. An efficient operational matrix method for a few nonlinear differential equations using wavelets. (English) Zbl 1429.92069 Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 144, 20 p. (2019). MSC: 92C40 42C40 34A34 PDF BibTeX XML Cite \textit{S. Padma} and \textit{G. Hariharan}, Int. J. Appl. Comput. Math. 5, No. 6, Paper No. 144, 20 p. (2019; Zbl 1429.92069) Full Text: DOI
Rigi, Fariba; Tajadodi, Haleh Numerical approach of fractional Abel differential equation by Genocchi polynomials. (English) Zbl 07127942 Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 134, 11 p. (2019). MSC: 65 26 PDF BibTeX XML Cite \textit{F. Rigi} and \textit{H. Tajadodi}, Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 134, 11 p. (2019; Zbl 07127942) Full Text: DOI
Bin-Saad, Maged G.; Pathan, M. A. Operational identities for Hermite-pseudo Laguerre type matrix polynomials and their applications. (English) Zbl 1426.33036 Honam Math. J. 41, No. 1, 35-49 (2019). MSC: 33C50 33C80 PDF BibTeX XML Cite \textit{M. G. Bin-Saad} and \textit{M. A. Pathan}, Honam Math. J. 41, No. 1, 35--49 (2019; Zbl 1426.33036) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions. (English) Zbl 1425.65123 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3297-3321 (2019). MSC: 65M70 65M15 35R11 65M06 11B68 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3297--3321 (2019; Zbl 1425.65123) Full Text: DOI
Keshavarz, Elham; Ordokhani, Yadollah A fast numerical algorithm based on the Taylor wavelets for solving the fractional integro-differential equations with weakly singular kernels. (English) Zbl 1437.65241 Math. Methods Appl. Sci. 42, No. 13, 4427-4443 (2019). MSC: 65R20 45J05 45E99 26A33 65T60 PDF BibTeX XML Cite \textit{E. Keshavarz} and \textit{Y. Ordokhani}, Math. Methods Appl. Sci. 42, No. 13, 4427--4443 (2019; Zbl 1437.65241) Full Text: DOI
El-Sayed, Adel A.; Agarwal, Praveen Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. (English) Zbl 1425.65124 Math. Methods Appl. Sci. 42, No. 11, 3978-3991 (2019). MSC: 65M70 42A05 42A10 42C05 34A08 PDF BibTeX XML Cite \textit{A. A. El-Sayed} and \textit{P. Agarwal}, Math. Methods Appl. Sci. 42, No. 11, 3978--3991 (2019; Zbl 1425.65124) Full Text: DOI
Chouhan, Devendra; Chandel, R. S. Numerical solution of the convection diffusion equation by the Legendre wavelet method. (English) Zbl 1438.42086 Jñānābha 49, No. 1, 26-39 (2019). MSC: 42C40 35A08 65L60 PDF BibTeX XML Cite \textit{D. Chouhan} and \textit{R. S. Chandel}, Jñānābha 49, No. 1, 26--39 (2019; Zbl 1438.42086) Full Text: Link
Kumar, Sachin; Pandey, Prashant; Das, Subir Gegenbauer wavelet operational matrix method for solving variable-order non-linear reaction-diffusion and Galilei invariant advection-diffusion equations. (English) Zbl 1438.35433 Comput. Appl. Math. 38, No. 4, Paper No. 162, 22 p. (2019). MSC: 35R11 34A08 41A10 PDF BibTeX XML Cite \textit{S. Kumar} et al., Comput. Appl. Math. 38, No. 4, Paper No. 162, 22 p. (2019; Zbl 1438.35433) Full Text: DOI
Kheirabadi, Akram; Vaziri, Asadollah Mahmoudzadeh; Effati, Sohrab Solving optimal control problem using Hermite wavelet. (English) Zbl 1428.49036 Numer. Algebra Control Optim. 9, No. 1, 101-112 (2019). MSC: 49M99 37N35 93C15 49N05 PDF BibTeX XML Cite \textit{A. Kheirabadi} et al., Numer. Algebra Control Optim. 9, No. 1, 101--112 (2019; Zbl 1428.49036) Full Text: DOI
Anzaldo-Meneses, A. Superlattices with entangled modes and the Hopf bundle. (English) Zbl 1421.81016 J. Math. Phys. 60, No. 8, 081906, 19 p. (2019). MSC: 81P40 55R10 81Q35 81U20 81P16 PDF BibTeX XML Cite \textit{A. Anzaldo-Meneses}, J. Math. Phys. 60, No. 8, 081906, 19 p. (2019; Zbl 1421.81016) Full Text: DOI
Balaji, S.; Hariharan, G. An efficient operational matrix method for the numerical solutions of the fractional Bagley-Torvik equation using wavelets. (English) Zbl 1433.65143 J. Math. Chem. 57, No. 8, 1885-1901 (2019). MSC: 65L60 PDF BibTeX XML Cite \textit{S. Balaji} and \textit{G. Hariharan}, J. Math. Chem. 57, No. 8, 1885--1901 (2019; Zbl 1433.65143) Full Text: DOI
Sidharth, B. G.; Das, Abhishek Entanglement and it’s manipulation. (English) Zbl 1422.81041 Int. J. Theor. Phys. 58, No. 9, 2936-2941 (2019). MSC: 81P40 81P16 82D25 82B30 82D80 PDF BibTeX XML Cite \textit{B. G. Sidharth} and \textit{A. Das}, Int. J. Theor. Phys. 58, No. 9, 2936--2941 (2019; Zbl 1422.81041) Full Text: DOI
Shah, Firdous A.; Abass, Rustam Solution of fractional oscillator equations using ultraspherical wavelets. (English) Zbl 1420.65074 Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950075, 22 p. (2019). MSC: 65L05 41A58 34A08 34K37 42C40 65L10 PDF BibTeX XML Cite \textit{F. A. Shah} and \textit{R. Abass}, Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950075, 22 p. (2019; Zbl 1420.65074) Full Text: DOI