×

Onset of chaos in differential delay equations. (English) Zbl 0644.65050

The authors study the onset of chaos in the differential delay equation \[ \dot x(t)=-x(t)+bx(t-2)/(1+x^{10}(t-2)), \] where \(b>0\) is a parameter. A numerical technique is developed which allows to study the global behaviour of the flow defined by the equation. Some typical results are: for \(b\approx 1.34\) a Hopf bifurcation from the steady states \(x_ 1=(b-1)^{0.1}\) and \(x_ 2=-x_ 1\) to stable T-periodic (T\(\approx 5.5)\) orbits takes place. Here the initial data that generates the T-periodic orbit is approximately found by the homotopy continuation method. For \(b\approx 1.56\) a period doubling bifurcation to stable 2T- periodic orbits occurs. For \(b\approx 1.72\) the 2T-periodic orbits become unstable and 4T-periodic orbits appear. For 1.725\(\leq b\leq 1.74\) several period doubling bifurcations take place and orbits of periods 8T, 16T and 32T are observed. Further on, there is a \(b_ 0\) between 1.74 and 1.77 such that for \(b=b_ 0\) there is a homoclinic tangency between the stable and unstable manifolds of the T-periodic orbit. For \(b=1.77\) there is a transverse homoclinic orbit. For \(b<1.8\) the unstable manifold of the Poincaré map is 1-dimensional. For \(b\approx 1.8\) a saddle-node bifurcation from the T-periodic orbit takes place and the unstable manifold becomes 2-dimensional. The creation of homoclinic orbits leads to infinitely many periodic orbits and thus to the onset of chaos.
Reviewer: M.M.Konstantinov

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Allgower and C.-S. Chien, SISSC, in press.; L. Allgower and C.-S. Chien, SISSC, in press.
[2] Farmer, J. D., Phys. D, 4, 366 (1982)
[3] Gavrilov, N. K.; Sil’nikov, L. P., II, Mat. Sb. USSR, 19, 139 (1973) · Zbl 0258.58009
[4] Georg, K., SIAM J. Sci. Statist. Comput., 2, No. 1, 35 (1981)
[5] Glass, L.; Mackey, M. C., Science, 197, 287 (1977)
[6] Glass, L.; Mackey, M. C., Pathological Conditions Resulting from Instabilities in Physiological Control Systems, (Gurel; Rossler, Bifurcation Theory and Applications (1979), N.Y. Acad. Sci: N.Y. Acad. Sci New York), 214 · Zbl 0427.92004
[7] Gottlieb, D.; Orszag, A., Numerical Analysis of Spectral Methods: Theory and Applications (1977), SIAM: SIAM Philadelphia · Zbl 0412.65058
[8] Hale, J. K., Theory of Functional Differential Equations (1977), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0425.34048
[9] Hale, J. K.; Lin, X.-B., Ann. Mat. Pura Appl. (IV), 144, 229 (1986)
[10] Hale, J. K.; Lin, X.-B., J. Differential Equations, 65, 175 (1986) · Zbl 0611.34074
[11] Hale, J. K.; Lin, X.-B., Nonlinear Anal., 10, 693 (1986)
[12] An Der Heiden, U.; Mackey, M. C., Funct. Biol. Med., 1, 156 (1982)
[13] An Der Heiden, U.; Mackey, M. C., J. Math. Biol., 16, 75 (1982)
[14] An Der Heiden, U.; Walther, H.-O., J. Differential Equations, 47, 2, 273 (1983)
[15] Ito, K.; Teglas, R., SIAM J. Control Optim., 24, 737 (1986)
[16] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, (Rabinowitz, P. H., Applications of Bifurcation Theory (1977), Academic Press: Academic Press New York), 348 · Zbl 0581.65043
[17] Li, T. Y.; Yorke, J. A., Amer. Math. Monthly, 82, 985 (1975)
[18] Newhouse, S., Topology, 13, 9 (1974)
[19] Newhouse, S., Asymptotic behavior and homoclinic points in nonlinear systems, (Heileman, Nonlinear Dynamics (1980), N.Y. Acad. Sci: N.Y. Acad. Sci New York), 292 · Zbl 0467.58020
[20] Newhouse, S.; Palis, J., Bifurcation of Morse-Smale dynamical systems, (Peixoto, Dynamical Systems (1973), Academic Press: Academic Press New York) · Zbl 0279.58011
[21] Sicnikov, L. P., Math. Sb. USSR, 10, 91 (1970)
[22] Sicnikov, L. P., Math. Sb. USSR, 3, 353 (1967)
[23] Smale, S., Bull. Amer. Math. Soc., 73, 747 (1967)
[24] Sternberg, N., J. Comput. Phys., 72, 422 (1987)
[25] Walther, H.-O., J. Nonlinear Anal., 5, 775 (1981)
[26] Palis, J.; De Meld, W., Geometric Theory of Dynamical Systems (1982), Springer-Verlag: Springer-Verlag New York
[27] Doedel, E., Continuation technique in the study of chemical reaction schemes, (Mathematical Methods in Energy Research. Mathematical Methods in Energy Research, Laramie, Wyo., 1982/1983 (1984), SIAM Summary: SIAM Summary Philadelphia), 103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.