zbMATH — the first resource for mathematics

Gaussian processes centered at their online average, and applications. (English) Zbl 1457.60054
Summary: We establish various properties of Gaussian processes centered at their online average and discuss their application to goodness-of-fit testing.
60G15 Gaussian processes
62F05 Asymptotic properties of parametric tests
Full Text: DOI
[1] Birman, M. S.; Solomyak, M. Z., Spectral Theory of Self-Adjoint Operators in Hilbert Space (1987), revised and extended. Lan’, St.Petersburg, 2010 (Russian); English transl. of the 1st ed.: Mathematics and Its Applications. Soviet Series, 5, Kluwer, Dordrecht etc. · Zbl 0744.47017
[2] Brown, A.; Halmos, P. R.; Shields, A. L., Cesàro operators, Acta Sci. Math. (Szeged), 26, 1-2, 125-137 (1965) · Zbl 0149.09902
[3] Chigansky, P.; Kleptsyna, M., Exact asymptotics in eigenproblems for fractional Brownian covariance operators, Stochastic Process. Appl., 128, 6, 2007-2059 (2018)
[4] Kamke, E., Differentialgleichungen Losungsmethoden Und Losungen, II (1947), Chelsea Publishing Company: Chelsea Publishing Company New York · JFM 68.0179.01
[5] Karol’, A.; Nazarov, A.; Nikitin, Ya., Small ball probabilities for Gaussian random fields and tensor products of compact operators, Trans. Amer. Math. Soc., 360, 3, 1443-1474 (2008) · Zbl 1136.60024
[6] Khmaladze, E. V., Martingale approach in the theory of goodness-of-fit tests, Teor. Veroyatn. Primen., 26, 2, 246-265 (1981), (Russian); English transl.: Theory of Probability & Its Applications, 26 (2) (1982) 240-257. · Zbl 0454.60049
[7] Khmaladze, E., Unitary transformations, empirical processes and distribution free testing, Bernoulli, 22, 1, 563-588 (2016) · Zbl 1345.60094
[8] Kleptsyna, M. L.; Le Breton, A., A Cameron-Martin type formula for general Gaussian processes – a filtering approach, Stochastics, 72, 3, 229-250 (2002) · Zbl 1002.60031
[9] Kruglyak, N.; Maligranda, L.; Persson, L.-E., Structure of the Hardy operator related to Laguerre polynomials and the Euler differential equation, Rev. Mat. Complut., 19, 2, 467-476 (2006) · Zbl 1121.47025
[10] Nazarov, A. I., Exact \(L_2\)-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems, J. Theoret. Probab., 22, 3, 640-665 (2009) · Zbl 1187.60025
[11] Nazarov, A. I., On a family of ordinary differential equations integrable in elementary functions, Math. Notes, 108, 4, 623-625 (2020) · Zbl 1457.34004
[12] Nazarov, A. I., Spectral asymptotics for a class of integro-differential equations arising in the theory of fractional Gaussian processes, Commun. Contemp. Math., 1-25 (2020)
[13] Nazarov, A. I.; Nikitin, Ya. Yu., Exact small ball behavior of integrated Gaussian processes under \(L_2\)-norm and spectral asymptotics of boundary value problems, Probab. Theory Related Fields, 129, 4, 469-494 (2004) · Zbl 1051.60041
[14] Nazarov, A.I., Nikitin, Ya.Yu., 2020. Spectral equivalence of Gaussian random functions: operator approach. Preprint available at https://arxiv.org/abs/2005.05771. p. 14.
[15] Nikitin, Y.; Sporysheva, P., On asymptotic efficiency of tests of fit based on the Deheuvels empirical process, J. Math. Sci., 159, 317-323 (2009) · Zbl 1274.62325
[16] Polyanin, A. D.; Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations (2003), CRC Press: CRC Press Boca Raton · Zbl 1015.34001
[17] Shorack, G. R.; Wellner, J. A., Empirical Processes with Applications to Statistics (2009), SIAM · Zbl 1171.62057
[18] Watson, G. S., Goodness-of-fit tests on a circle, Biometrika, 48, 1/2, 109-114 (1961) · Zbl 0212.21905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.