×

Computational cosmology: from the early universe to the large scale structure. (English) Zbl 1023.83002

Summary: In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods) applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Update to the author’s paper [Zbl 1316.83013], see also the update [Zbl 1316.83012]: Article revision adding two new sections on ‘chaotic scalar field dynamics’ and ‘SZ effect’ and an appendix on basic equations and numerical methods.

MSC:

83-08 Computational methods for problems pertaining to relativity and gravitational theory
83F05 Relativistic cosmology
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory

Software:

COSMICS; HOT
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML Link

References:

[1] Abel, T., Anninos, P., Zhang, Y., and Norman, M.L., lModeling Primordial Gas in Numerical Cosmology“, <Emphasis Type=”Italic“>New Astronomy, <Emphasis Type=”Bold”>2, 181-207, (June, 1997). 4.3, 6.4.2, 6.4.3 · doi:10.1016/S1384-1076(97)00010-9
[2] Abel, T., Anninos, P., Zhang, Y., and Norman, M.L., “First Structure Formation: I. Primordial Star Forming Regions in hierarchical models”, Astrophys. J., 508, 518, (1998). 4.3 · doi:10.1086/306410
[3] Abel, T., Bryan, G.L., and Norman, M.L., “The Formation and Fragmentation of Primordial Molecular Clouds”, Astron. Astrophys., 540, 39-44, (2000). 4.3
[4] Abney, M., “hydrodynamic Detonation Instability in Electroweak and QCD Phase Transitions”, Phys. Rev. D, 49, 1777-1782, (1994). 3.4 · doi:10.1103/PhysRevD.49.1777
[5] Alcubierre, M., dThe appearance of coordinate shocks in hyperbolic formalisms of General Relativity“, <Emphasis Type=”Italic“>Phys. Rev. D, <Emphasis Type=”Bold”>55, 5981-5991, (1997). 6.1.2 · doi:10.1103/PhysRevD.55.5981
[6] Alcubierre, M., Brugmann, B., Dramlitsch, T., Font, J.A., Papadopoulos, P., Seidel, E., Stergioulas, N., and Takahashi, R., “Towards a Stable Numerical Evolution of Strongly Gravitating Systems in General Relativity: The Conformal Treatments”, Phys. Rev. D, 62, 044034, (2000). 6.1.1 · doi:10.1103/PhysRevD.62.044034
[7] Anninos, P., “Plane-symmetric Cosmology with Relativistic Hydrodynamics”, Phys. Rev. D, 58, 064010, (1998). 3.6.1, 6.1.2, 6.1.2, 6.3 · doi:10.1103/PhysRevD.58.064010
[8] Anninos, P., Camarda, K., Masso, J., Seidel, E., Suen, W.-M., and Towns, J., “Three-Dimensional numerical relativity: the evolution of black holes”, Phys. Rev. D, 52, 2059-2082, (1995). 6.1.2 · doi:10.1103/PhysRevD.52.2059
[9] Anninos, P., Centrella, J., and Matzner, R., “Nonlinear Solutions for Initial Data in the Vacuum Einstein Equations in plane symmetry”, Phys. Rev. D, 39, 2155-2171, (1989). 3.6.1 · doi:10.1103/PhysRevD.39.2155
[10] Anninos, P., Centrella, J., and Matzner, R., “Nonlinear Wave Solutions to the Planar Vacuum Einstein Equations”, Phys. Rev. D, 43, 1825-1838, (1991). 3.6.1 · doi:10.1103/PhysRevD.43.1825
[11] Anninos, P., Centrella, J., and Matzner, R., “Numerical Methods for Solving the Planar Vacuum Einstein Equations”, Phys. Rev. D, 43, 1808-1824, (1991). 3.6.1 · doi:10.1103/PhysRevD.43.1808
[12] Anninos, P., and Fragile, P.C., “Nonoscillatory Central Difference and Artificial Viscosity Schemes for Relativistic Hydrodynamics”, Astrophys. J. Suppl. Ser., 144, 243-257, (2003). 6.2.4 · doi:10.1086/344723
[13] Anninos, P., Masso, J., Seidel, E., Suen, W.-M., and Tobias, M., “Dynamics of Gravitational Waves in 3D: Formulations, Methods, and Tests”, Phys. Rev. D, 56, 842-858, (1997). 6.1.1 · doi:10.1103/PhysRevD.56.842
[14] Anninos, P., Matzner, R., Rothman, T., and Ryan, M., “How does Inflation Isotropize the Universe?”, Phys. Rev. D, 43, 3821-3832, (1991). 3.2.3 · doi:10.1103/PhysRevD.43.3821
[15] Anninos, P., Matzner, R., Tuluie, R., and Centrella, J., “Anisotropies of the Cosmic Background Radiation in a Hot Dark Matter Universe”, Astrophys. J., 382, 71-78, (1991). 4.1.4, 4.1.4 · doi:10.1086/170694
[16] Anninos, P., and McKinney, J., “Relativistic Hydrodynamics of Cosmological Sheets”, Phys. Rev. D, 60, 064011, (1999). 3.6.1, 4.6 · doi:10.1103/PhysRevD.60.064011
[17] Anninos, P., and Norman, M.L., “Hierarchical Numerical Cosmology: Resolving X-Ray Clusters”, Astrophys. J., 459, 12-26, (1996). 4.5.3, 6.4.3 · doi:10.1086/176865
[18] Anninos, P., and Norman, M.L., “The Role of Hydrogen Molecules in the Radiative Cooling and Fragmentation of Cosmological Sheetsrd, <Emphasis Type=”Italic“>Astrophys. J., <Emphasis Type=”Bold”>460, 556-568, (1996). 4.6 · doi:10.1086/176992
[19] Anninos, P., Norman, M.L., and Clarke, D.A., “Hierarchical Numerical Cosmology with Hydrodynamics: Methods and Code Tests”, Astrophys. J., 436, 11-22, (1994). 6.4.3 · doi:10.1086/174876
[20] Anninos, P., Oliveira, S., and Matzner, R., “Fractal structure in the scalar λ(<Emphasis Type=”Italic“>φ2-1)2 theory”, Phys. Rev. D, 44, 1147-1160, (1991). 3.3 · doi:10.1103/PhysRevD.44.1147
[21] Anninos, P., Zhang, Y., Abel, T., and Norman, M.L., “Cosmological Hydrodynamics with Multi-Species Chemistry and Nonequilibrium Ionization and Cooling”, New Astronomy, 2, 209-224, (June, 1997). 4.3, 6.4.2, 6.4.3 · doi:10.1016/S1384-1076(97)00009-2
[22] Anninos, W.Y., Norman, M.L., and Anninos, P., “Nonlinear Hydrodynamics of Cosmological Sheets: II. Fragmentation and the Gravitational Cooling and Thin-Shell Instabilities”, Astrophys. J., 450, 1-13, (1995). 4.6
[23] Arnowitt, R.; Deser, S.; Misner, CW; Witten, L. (ed.), The Dynamics of General Relativity, 227-265 (1962), New York, U.S.A.
[24] Bahcall, N.A., Fan, X., and Cen, R., “Constraining Ω with Cluster Evolution”, Astrophys. J., 485, L53-L56, (1997). 4.5.2 · doi:10.1086/310814
[25] Balakrishna, J., Danes, G., Seidel, E., Suen, W.-M., Tobias, M., and Wang, E., “Coordinate Conditions in Three-Dimensional Numerical Relativity”, Class. Quantum Grav., 13, L135-L142, (1996). 6.1.2 · Zbl 0875.83013 · doi:10.1088/0264-9381/13/12/001
[26] Banyuls, F., Font, J.A., Ibanez, J.M., Marti, J.M., and Miralles, J.A., “Numerical 3 + 1 General Relativistic Hydrodynamics: a Local Characteristic Approach”, Astrophys. J., 476, 221-231, (1997). 6.2.4 · doi:10.1086/303604
[27] Bardeen, J.M., Bond, JR., Kaiser, N., and Szalay, A.S., “The Statistics of Peaks of Gaussian Random Fields”, Astrophys. J., 304, 15-61, (1986). 6.4.4, 6.4.4 · doi:10.1086/164143
[28] Barreiro, R.B., “The Cosmic Microwave Background: State of the Art”, New Astron. Rev., 44, 179-204, (2000). 4.1.4 · doi:10.1016/S1387-6473(00)00063-4
[29] Barrett, J.W., Galassi, M., Miller, W.A., Sorkin, R.D., Tuckey, P.A., and Williams, R.M., “A Parallelizable Implicit Evolution Scheme for Regge Calculus”, Int. J. Theor. Phys., 36, 815-840, (1997). 6.1.4 · Zbl 0871.53067 · doi:10.1007/BF02435787
[30] Barrow, J.D., “Chaos in the Einstein Equations”, Phys. Rev. Lett., 46, 963-966, (1981). 3.1.1 · doi:10.1103/PhysRevLett.46.963
[31] Baumgarte, T.D., and Shapiro, S.L., “On the Numerical Integration of Einstein’s Field Equations”, Phys. Rev. D, 59, 024007, (1999). 6.1.1 · Zbl 1250.83004 · doi:10.1103/PhysRevD.59.024007
[32] Belinskii, V.A., Lifshitz, E.M., and Khalatnikov, I.M., “Oscillatory Approach to a Singularity Point in the Relativistic Cosmology”, Adv. Phys., 19, 525-573, (1970). 3.1.1 · doi:10.1080/00018737000101171
[33] Belinskil, V.A., Lifshitz, E.M., and Khalatnikov, I.M., “Oscillatory Approach to the Singularity Point in Relativistic Cosmology”, Sov. Phys. Usp., 13, 745-765, (1971). 3.1.1, 3.1.1 · doi:10.1070/PU1971v013n06ABEH004279
[34] Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Spergel, D.N., Tucker, G.S., Wollack, E., Wright, E.L., Barnes, C., Greason, MR., Hill, R.S., Komatsu, E., Nolta, MR., Odegard, N., Peiris, H.V., Verde, L., and Welland, J.L., “First Year Wilkonson Microwave Anistropy Probe (WMAP) Observations: Preliminary Maps and Basic Results”, Astrophys. J. Suppl. Ser., 148, 1-27, (2003). 4.1 · doi:10.1086/377253
[35] Berger, B.K., “Comments on the Computation of Liapunov Exponents for the Mixmaster Universe”, Gen. Relativ. Gravit., 23, 1385-1402, (1991). 3.1.1 · doi:10.1007/BF00756831
[36] Berger, B.K., “Numerical Investigation of Cosmological Singularities”, (December, 1995). URL (cited on 3 September 1997): http://arXiv.org/abs/gr-gc/9512004. 3.1.2, 6.1.3
[37] Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, (2002). URL (cited on 27 October 2004): http://www.livingreviews.org/lrr-2002-1. 3.1.1, 6.1.3 · Zbl 1023.83003
[38] Berger, B.K., Chrusciel, P.T., Isenberg, J.A., and Moncrief, V., “Global Foliations of Vacuum Spacetimes with <Emphasis Type=”Italic“>T2 Isometry”, Ann. Phys. (N. Y.), 260, 117-148, (1997). 3.1.2 · Zbl 0929.58013 · doi:10.1006/aphy.1997.5707
[39] Berger, B.K., Garfinkle, D., and Strasser, E., “New Algorithm for Mixmaster Dynamics”, Class. Quantum Grav., 14, L29-L36, (1997). 6.1.3 · Zbl 0869.58059 · doi:10.1088/0264-9381/14/2/001
[40] Berger, B.K., and Moncrief, V., “Numerical Investigations of Cosmological Singularities”, Phys. Rev. D, 48, 4676-4687, (1993). 6.1.3, 6.1.3 · doi:10.1103/PhysRevD.48.4676
[41] Berger, B.K., and Moncrief, V., “Evidence for an oscillatory singularity in generic U(1) symmetric cosmologies on T3 x R”, Phys. Rev. D, 58, 064023, (1998). 3.1.2 · doi:10.1103/PhysRevD.58.064023
[42] Berger, B.K., and Moncrief, V., “Signature for local Mixmaster dynamics in U(1) symmetric cosmologies”, Phys. Rev. D, 62, 123501, (2000). 3.1.2 · doi:10.1103/PhysRevD.62.123501
[43] Bernstein, D.; Hobill, DW; Smarr, LL; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Black Hole Spacetimes: Testing Numerical Relativity, 57-73 (1989), Cambridge, U.K.
[44] Bertschinger, E., “COSMICS: Cosmological Initial Conditions and Microwave Anisotropy Codes”, (June, 1995). URL (cited on 30 August 2000): http://arXiv.org/abs/astro-ph/9506070. 6.4.4 · Zbl 0722.58037
[45] Bertschinger, E., “Simulations of Structure Formation in the Universe”, Annu. Rev. Astron. Astrophys., 36, 599-654, (1998). 4, 6.4.3 · doi:10.1146/annurev.astro.36.1.599
[46] Birrell, N.D., and Davies, P.C.W., Quantum Fields in Curved Space, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982). 6.2.2 · Zbl 0476.53017 · doi:10.1017/CBO9780511622632
[47] Bond, JR., Centrella, J., Szalay, A.S., and Wilson, JR., “Cooling Pancakes”, Mon. Not. R. Astron. Soc., 210, 515-545, (1984). 4.6 · doi:10.1093/mnras/210.3.515
[48] Bromm, V., Coppi, P.S., and Larson, R.B., “Forming the First Stars in the Universe: The Fragmentation of Primordial Gas”, Astrophys. J., 527, L5-8, (1999). 4.3, 6.4.2 · doi:10.1086/312385
[49] Bryan, G.L., Cen, R., Norman, M.L., Ostriker, J.P., and Stone, J.M., “X-Ray Clusters from a High-Resolution Hydrodynamic PPM Simulation of the Cold Dark Matter Universe”, Astrophys. J., 428, 405-418, (1994). 4.5.3 · doi:10.1086/174253
[50] Bryan, G.L., Machacek, M.E., Anninos, P., and Norman, M.L., “Resolving the Lya Forest”, Astrophys. J., 517, 13-30, (1999). 4.4 · doi:10.1086/307173
[51] Bryan, GL; Norman, ML; Baden, SB (ed.); Chrisochoides, NP (ed.); Gannon, DB (ed.); Norman, ML (ed.), A hybrid AMR appplication for cosmology and astrophysics, Proceedings of the Workshop held at the Institute for Mathematics and Its Applications, University of Minnesota, March 12-13, 1997, New York, U.S.A.
[52] Bryan, G.L., and Norman, M.L., “Statistical Properties of X-ray Clusters: Analytic and Numerical Comparisons”, Astrophys. J., 495, 80-99, (1998). 4.5.3 · doi:10.1086/305262
[53] Burd, A.B., Buric, N., and Ellis, G.F.R., “A Numerical Analysis of Chaotic Behavior in Bianchi IX Models”, Gen. Relativ. Gravit., 22, 349-363, (1990). 3.1.1 · Zbl 0698.58045 · doi:10.1007/BF00756280
[54] Cen, R., “A Hydrodynamic Approach to Cosmology — Methodology”, Astrophys. J. Suppl. Ser., 78, 341-364, (1992). 6.4.2 · doi:10.1086/191630
[55] Cen, R., Gott, JR., Ostriker, J.P., and Turner, E.L., ldStrong Gravitational Lensing Statistics as a Test of Cosmogonic Scenarios“, <Emphasis Type=”Italic”>Astrophys. J., 423, 1-11, (1994). 4.2 · doi:10.1086/173784
[56] Cen, R., and Ostriker, J.P., “X-ray Clusters in a Cold Dark Matter + A Universe: A Direct, Large-Scale, High Resolution, Hydrodynamic Simulation”, Astrophys. J., 429, 4-21, (1994). 4.5.3 · doi:10.1086/174297
[57] Centrella, J., and Matzner, R.A., “Plane-Symmetric Cosmologies”, Astrophys. J., 230, 311-324, (1979). 3.6.1 · doi:10.1086/157087
[58] Centrella, J., and Matzner, R.A., “Colliding Gravitational Waves in Expanding Cosmologies”, Phys. Rev. D, 25, 930-941, (1982). 3.6.1 · doi:10.1103/PhysRevD.25.930
[59] Centrella, J., and Wilson, JR., “Planar Numerical Cosmology: I. The Differential Equations”, Astrophys. J., 273, 428-435, (1983). 3.2.1, 3.6.1, 6.1.2 · doi:10.1086/161381
[60] Centrella, J., and Wilson, JR., “Planar Numerical Cosmology: II. The Difference Equations and Numerical Tests”, Astrophys. J. Suppl. Ser., 54, 229-249, (1984). 3.2.1, 3.6.1, 6.1.2, 6.1.2 · doi:10.1086/190927
[61] Centrella, JM; Centrella, JM (ed.), Nonlinear Gravitational Waves and Inhomogeneous Cosmologies, Proceedings of the Workshop, Drexel University, October 7-11, 1985, Cambridge, U.K.
[62] Charlton, J., Anninos, P., Zhang, Y., and Norman, M.L., “Probing Lya Absorbers in Cosmological Simulations with Double Lines of Sight”, Astrophys. J., 485, 26-38, (1997). 4.4 · doi:10.1086/304387
[63] Cornish, N.J., and Levin, J., “Chaos, Fractals and Inflation”, Phys. Rev. D, 53, 3022-3032, (1996). 3.3 · doi:10.1103/PhysRevD.53.3022
[64] Cornish, N.J., and Levin, J., “The Mixmaster Universe is Chaotic”, Phys. Rev. Lett., 78, 998-1001, (1997). 3.1.1 · doi:10.1103/PhysRevLett.78.998
[65] Crone, M.M., Evrard, A.E., and Richstone, D.O., “The Cosmological Dependence of Cluster Density Profiles”, Astrophys. J., 434, 402-416, (1994). 4.5.1 · doi:10.1086/174742
[66] da Silva, A.C., Barbosa, D., Liddle, A.R., and Thomas, P.A., “Hydrodynamical Simulations of the Sunyaev-Zel’dovich effect”, Mon. Not. R. Astron. Soc., 317, 37, (2000). 4.5.4 · doi:10.1046/j.1365-8711.2000.03553.x
[67] Dave, R., Hernquist, L., Weinberg, D.H., and Katz, N., “Voight Profile Analysis of the Lya Forest in a Cold Dark Matter Universe”, Astrophys. J., 477, 21-26, (1997). 4.4 · doi:10.1086/303712
[68] Efstathiou, G.P., Davis, M., Frenk, C.S., and White, S.D.M., “Numerical Techniques for Large Cosmological N-Body Simulations”, Astrophys. J. Suppl. Ser., 57, 241-260, (1985). 6.4.3, 6.4.4 · doi:10.1086/191003
[69] Ellis, G.F.R., and MacCallum, M.A.H., “A Class of Homogeneous Cosmological Models”, Commun. Math. Phys., 12, 108, (1969). 2.2 · Zbl 0177.57601 · doi:10.1007/BF01645908
[70] Ellis, GFR; Elst, H.; Lachèze-Rey, M. (ed.), Cosmological Models, Proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology, Cargèse, France, August 17-29, 1998, Dordrecht, Netherlands
[71] Eppley, K.; Smarr, LL (ed.), Pure Gravitational Waves, Proceedings of the Battelle Seattle Workshop, July 24-August 4, 1978, Cambridge, U.K.
[72] Evrard, A.E., “Beyond N-Body: 3D Cosmological Gas Dynamics”, Mon. Not. R. Astron. Soc., 235, 911-934, (1988). 6.4.3 · Zbl 0662.76095 · doi:10.1093/mnras/235.3.911
[73] Ferraz, K., Francisco, G., and Matsas, G.E.A., “Chaotic and Nonchaotic Behavior in the Mixmaster Dynamics”, Phys. Lett. A, 156, 407-409, (1991). 3.1.1 · doi:10.1016/0375-9601(91)90717-M
[74] Flores, R.A., and Primack, J.R., “Cluster Cores, Gravitational Lensing, and Cosmology”, Astrophys. J. Lett., 457, L5-L9, (1996). 4.2 · doi:10.1086/309879
[75] Font, J.A., “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity, 6, (2003). URL (cited on 27 October 2004): http://www.livingreviews.org/lrr-2003-4. 6.2.4 · Zbl 1068.83501
[76] Fragile, P.C., and Anninos, P., “Hydrodynamic Stability of Cosmological Quark-Hadron Phase Transitions”, Phys. Rev. D, 67, 103010, (2003). 3.4 · doi:10.1103/PhysRevD.67.103010
[77] Frenk, C.S., White, S.D.M., Bode, P., Bond, J.R., Bryan, G.L., Cen, R., Couchman, H.M.P., Evrard, A.E., Gnedin, N., Jenkins, A., Khokhlov, A.M., Klypin, A., Navarro, J.F., Norman, M.L., Ostriker, J.P., Owen, J.M., Pearce, F.R., Pen, U.-L., Steinmetz, M., Thomas, P.A., Villumsen, J.V., Wadsley, J.W., Warren, M.S., Xu, G., and Yepes, G., “The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions”, Astrophys. J., 525, 554-582, (1999). 6.4.3 · doi:10.1086/307908
[78] Galli, D., and Palla, F., “The Chemistry of the Early Universe”, Astron. Astrophys., 335, 403-420, (1998). 6.4.2
[79] Garfinkle, D., “Numerical Simulations of generic Singularities”, Phys. Rev. Lett., 93, 161101, (2004). URL (cited on 26 October 2004): http://arXiv.org/abs/gr-gc/0312117. 3.1.2 · doi:10.1103/PhysRevLett.93.161101
[80] Gawiser, E., and Silk, J., “The Cosmic Microwave Background Radiation”, Phys. Rep., 333, 245-267, (2000). 4.1.4 · Zbl 1002.83524 · doi:10.1016/S0370-1573(00)00025-9
[81] Gentle, A.P., and Miller, W.A., “A Fully (3+1)-D Regge Calculus Model of the Kasner Cosmology”, Class. Quantum Grav., 15, 389-405 · Zbl 0909.53058
[82] Gnedin, N.Y., “Softened Lagrangian Hydrodynamics for Cosmology”, Astrophys. J. Suppl. Ser., 97, 231-257, (1995). 6.4.3 · doi:10.1086/192141
[83] Goldwirth, D.S., and Piran, T., “Inhomogeneity and the Onset of Inflation”, Phys. Rev. Lett., 64, 2852-2855, (1990). 3.2.2 · doi:10.1103/PhysRevLett.64.2852
[84] Hawley, J., Smarr, L., and Wilson, J., “A Numerical Study of Nonspherical Black Hole Accretion. II. Finite Differencing and Code Calibration”, Astrophys. J. Suppl. Ser., 55, 211-246, (1984). 6.2.4 · doi:10.1086/190953
[85] Hawley, J.F., Smarr, L.L., and Wilson, JR., “A Numerical Study of Nonspherical Black Hole Accretion. I. Equations and Test Problems”, Astrophys. J., 277, 296-311, (1984). 6.2.4 · doi:10.1086/161696
[86] Hern, S.D., “Coordinate Singularities in Harmonically-sliced Cosmologies”, Phys. Rev. D, 62, 044003, (2000). 6.1.2 · doi:10.1103/PhysRevD.62.044003
[87] Hern, S.D., and Stewart, J.M., “The Gowdy T3 Cosmologies Revisited”, Class. Quantum Grav., 15, 1581-1593, (1998). 3.1.2 · Zbl 0933.83043 · doi:10.1088/0264-9381/15/6/014
[88] Hernquist, L., and Katz, N., “Performance Characteristics of Tree Codes”, Astrophys. J. Suppl. Ser., 64, 715-734, (1989). 6.4.3 · doi:10.1086/191215
[89] Hobill, D., Bernstein, D., Welge, M., and Simkins, D., “The Mixmaster Cosmology as a Dynamical System”, Class. Quantum Grav., 8, 1155-1171, (1991). 3.1.1 · Zbl 0722.58037 · doi:10.1088/0264-9381/8/6/013
[90] Hockney, R.W., and Eastwood, J.W., Computer Simulation Using Particles, (IOP Publishing, Bristol, U.K., 1988). 6.4.3 · Zbl 0662.76002 · doi:10.1201/9781439822050
[91] Holcomb, KA; Centrella, JM (ed.), Vacuum Axisymmetric Cosmologies, Proceedings of a workshop, October 7-11, 1985, Cambridge, U.K.
[92] Hollenbach, D., and McKee, C.F., “Molecule Formation and Infrared Emission in Fast Interstellar Shocks: I. Physical Processes”, Astrophys. J. Suppl. Ser., 41, 555-592, (1979). 6.4.2 · doi:10.1086/190631
[93] Hu, W., and Dodelson, S., “Cosmic Microwave Background Anisotropies”, Annu. Rev. Astron. Astrophys., 40, 171-216, (2002). 4.1.4 · doi:10.1146/annurev.astro.40.060401.093926
[94] Hu, W., Scott, D., Sugiyama, N., and White, M., “The effect of Physical Assumptions on the Calculation of Microwave Background Anisotropies”, Phys. Rev. D, 52, 5498-5515, (1995). 4.1.3, 4.1.4, 4.1.4 · doi:10.1103/PhysRevD.52.5498
[95] Huet, P., Kajantie, K., Leigh, R.G., Liu, B.H., and McLerran, L., “Hydrodynamic Stability Analysis of Burning Bubbles in Electroweak Theory and in QCD”, Phys. Rev. D, 48, 2477-2492, (1993). 3.4 · doi:10.1103/PhysRevD.48.2477
[96] Ignatius, J., Kajantie, K., Kurki-Suonio, H., and Laine, H., “Growth of Bubbles in Cosmological Phase Transitions”, Phys. Rev. D, 49, 3854-3868, (1994). 3.4 · Zbl 1148.80328 · doi:10.1103/PhysRevD.49.3854
[97] Isenberg, J.A., and Moncrief, V., “The Existence of Constant Mean Curvature Foliations of Gowdy 3-Torus Spacetimes”, Commun. Math. Phys., 86, 485-493, (1982). 6.1.2 · Zbl 0526.57017 · doi:10.1007/BF01214884
[98] Isenberg, J.A., and Moncrief, V., “Asymptotic Behavior of the Gravitational Field and the Nature of Singularities in Gowdy Spacetimes”, Ann. Phys. (N.Y.), 199, 84-122, (1990). 3.1.2 · Zbl 0723.53061 · doi:10.1016/0003-4916(90)90369-Y
[99] Jiang, O.-S., Levy, D., Lin, C.-T., Osher, S., and Tadmor, E., “High Resolution Nonoscillatory Central Difference Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws”, SIAM J. Numer. Anal., 35, 2147-2168, (1998). 6.2.4 · Zbl 0920.65053 · doi:10.1137/S0036142997317560
[100] Jiang, O.-S., and Tadmor, E., “Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws”, SIAM J. Sci. Comput., 19, 1892-1917, (1998). 6.2.4 · Zbl 0914.65095 · doi:10.1137/S106482759631041X
[101] Jones, A.W., and Lasenby, AX, “The Cosmic Microwave Background”, Living Rev. Relativity, 1, (1998). URL (cited on 29 August 2000): http://www.livingreviews.org/lrr-1998-11. 4.1.3 · Zbl 1028.83531
[102] Kamionkowski, M., and Freese, K., “Instability and Subsequent Evolution of Electroweak Bubbles”, Phys. Rev. Lett., 69, 2743-2746, (1992). 3.4, 3.4 · doi:10.1103/PhysRevLett.69.2743
[103] Kang, H., Ostriker, J.P., Cen, R., Ryu, D., Hernquist, L., Evrard, A.E., Bryan, G.L., and Norman, M.L., “A Comparison of Cosmological Hydrodynamic Codes”, Astrophys. J., 430, 83-100, (1994). 6.4.3 · doi:10.1086/174384
[104] Kolb, E.W., and Turner, M.S., The Early Universe, vol. 69 of Frontiers in Physics, (Addison-Wesley, Reading, U.S.A., 1990). 2.2, 3.2.1 · Zbl 0984.83503
[105] Krasinski, A., Inhomogeneous Cosmological Models, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996). 2.2 · Zbl 0997.83524
[106] Kurki-Suonio, H., Centrella, J.M., Matzner, R.A., and Wilson, J.R., “Inflation from Inhomogeneous Initial Data in a One-Dimensional Back-Reacting Cosmology”, Phys. Rev. D, 35, 435-448, (1987). 3.2.1 · doi:10.1103/PhysRevD.35.435
[107] Kurki-Suonio, H., Laguna, P., and Matzner, R.A., “Inhomogeneous Inflation: Numerical Evolution”, Phys. Rev. D, 48, 3611-3624, (1993). 3.2.5, 6.2.2 · doi:10.1103/PhysRevD.48.3611
[108] Kurki-Suonio, H., and Laine, M., “On Bubble Growth and Droplet Decay in Cosmological Phase Transitions”, Phys. Rev. D, 54, 7163-7171, (1996). 3.4 · doi:10.1103/PhysRevD.54.7163
[109] Kurki-Suonio, H., and Matzner, R., “Anisotropy and Cosmic Nucleosynthesis of Light Isotopes Including 7Li”, Phys. Rev. D, 31, 1811-1814, (1985). 3.5 · doi:10.1103/PhysRevD.31.1811
[110] Kurki-Suonio, H., Matzner, R.A., Centrella, J.M., Rothman, T., and Wilson, J.R., “Inhomogeneous Nucleosynthesis with Neutron Diffusion”, Phys. Rev. D, 38, 1091-1099, (1988). 3.5 · doi:10.1103/PhysRevD.38.1091
[111] Liddle, A.R., An Introduction to Cosmological Inflation“, (January, 1999). URL (cited on 11 January 1999): http://arXiv.org/abs/astro-ph/9901124 <RefTarget Address=”http://arXiv.org/abs/astro-ph/9901124“ TargetType=”URL”/> . 3.2
[112] Link, B., “Deflagration Instability in the Quark-Hadron Phase Transition”, Phys. Rev. Lett., 68, 2425-2428, (1992). 3.4 · doi:10.1103/PhysRevLett.68.2425
[113] Lyth, D.H., and Riotto, A., “Particle Physics Models of Inflation and the Cosmological Density Perturbation”, Phys. Rep., 314, 1-146, (1999). 3.2 · doi:10.1016/S0370-1573(98)00128-8
[114] Ma, C.-P., and Bertschinger, E., “Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges”, Astrophys. J., 455, 7-25, (1995). 4.1.4 · doi:10.1086/176550
[115] Machacek, M.E., Bryan, G.L., Meiksin, A., Anninos, P., Thayer, D., Norman, M.L., and Zhang, Y., “Hydrodynamical Simulations of the Lya Forest: Model Comparisons”, Astrophys. J., 532, 118-135, (2000). 4.4 · doi:10.1086/308551
[116] Matzner, R.A., Shepley, L.C., and Warren, J.B., “Dynamics of SO(3, R)-homogeneous cosmologies”, Ann. Phys. (N.Y.), 57, 401-460, (1970). 3.1.1 · doi:10.1016/0003-4916(70)90360-X
[117] Meiksin, A., Bryan, G.L., and Machacek, M.E., “Hydrodynamical Simulations of the Lya forest: Data Comparisons”, Mon. Not. R. Astron. Soc., 327, 296, (2001). 4.4 · doi:10.1046/j.1365-8711.2001.04719.x
[118] Miralda-Escude, J., Cen, R., Ostriker, J.P., and Rauch, M., “The Lya Forest from Gravitational Collapse in the Cold Dark Matter + A Model”, Astrophys. J., 471, 582-616, (1996). 4.4 · doi:10.1086/177992
[119] Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071-1074, (1969). 3.1.1 · Zbl 0177.28701 · doi:10.1103/PhysRevLett.22.1071
[120] Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973). 3.1.1
[121] Moncrief, V., “Finite-Difference Approach to Solving Operator Equations of Motion in tum Theory”, Phys. Rev. D, 28, 2485-2490, (1983). 6.1.3 · doi:10.1103/PhysRevD.28.2485
[122] Monerat, G.A., de Oliveira, H.P., and Soares, I.D., “Chaos in Preinflationary Friedmann-Robertson-Walker Universes”, Phys. Rev. D, 58, 063504, (1998). 3.3 · doi:10.1103/PhysRevD.58.063504
[123] Moser, A.A., Matzner, R.A., and Ryan Jr, M.P., “Numerical Solutions for Symmetric Bianchi Type IX Universes”, Ann. Phys. (N.Y.), 79, 558, (1973). 3.1.1 · doi:10.1016/0003-4916(73)90097-3
[124] Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H., “Theory of Cosmological Perturbations”, Phys. Rep., 215, 203-333, (1992). 6.4 · doi:10.1016/0370-1573(92)90044-Z
[125] Navarro, J.F., Frenk, C.S., and White, S.D.M., “A Universal Density Profile from Hierarchical Clustering”, Astrophys. J., 490, 493-508, (1997). 4.5.1 · doi:10.1086/304888
[126] Norman, ML; Winkler, K-HA; Winkler, K-HA (ed.); Norman, ML (ed.), Why Ultrarelativistic Numerical Hydrodynamics is Difficult, Proceedings of the NATO Advanced Research Workshop, Garching, Germany, August 2-13, 1982, Dordrecht, Netherlands · doi:10.1007/978-94-009-4754-2_13
[127] Ostriker, J.P., and Gnedin, N.Y., “Reheating of the Universe and Population III”, Astrophys. J., 472, L63 L67, (1996). 4.3 · Zbl 0826.53068 · doi:10.1086/310375
[128] Ostriker, J.P., and Steinhardt, P.J., “Cosmic Concordance”, (May, 1995). URL (cited on 5 September 2000): http://arXiv.org/abs/astro-ph/9505066. 2.2 · Zbl 0933.83043
[129] Ove, R.; Centrella, JM (ed.), Numerical Investigations of Cosmic Censorship on T3XR, Proceedings of a workshop, Drexel University, October 7-11, 1985, Cambridge, U.K.
[130] Owen, J.M., Villumsen, J.V., Shapiro, P.R., and Martel, H., “Adaptive Smoothed Particle Hydrodynamics: Methodology II”, Astrophys. J. Suppl. Ser., 116, 155-209, (1998). 6.4.3 · doi:10.1086/313100
[131] Padmanabhan, T., Structure Formation in the Universe, (Cambridge University Press, Cambridge, U.K.,; New York, U.S.A., 1993). 4, 4.1.4
[132] Peebles, P.J.E., Principles of Physical Cosmology, Princeton Series in Physics, (Princeton University Press, Princeton, U.S.A., 1993). 4 · Zbl 1422.83022
[133] Peebles, P.J.E., and Ratra, B., “The Cosmological Constant and Dark Energy”, Rev. Mod. Phys., 75, 559-606, (2003). 2.2 · Zbl 1205.83082 · doi:10.1103/RevModPhys.75.559
[134] Quills, V., Ibanez, J.M., and Saez, D., “A Multidimensional Hydrodynamic Code for Structure Evolution in Cosmology”, Astrophys. J., 469, 11-25, (1996). 6.4.3 · doi:10.1086/177753
[135] Quirk, J.J., “A Contribution to the Great Riemann Solver Debate”, Int. J. Numer. Meth. Fluids, 18, 555-574, (1994). 6.2.4 · Zbl 0794.76061 · doi:10.1002/fld.1650180603
[136] Reula, O.A., “Hyperbolic Methods for Einstein’s Equations”, Living Rev. Relativity, 1, (1998). URL (cited on 29 August 2000): http://www.livingreviews.org/lrr-1998-3. 6.1.1
[137] Rezzolla, L., “Stability of Cosmological Detonation Fronts”, Phys. Rev. D, 54, 1345-1358, (1996). 3.4 · doi:10.1103/PhysRevD.54.1345
[138] Rezzolla, L., Miller, J.C., and Pantano, O., “Evaporation of Quark Drops During the Cosmological Quark-Hadron Transition”, Phys. Rev. D, 52, 3202-3213, (1995). 3.4 · doi:10.1103/PhysRevD.52.3202
[139] Romero, J.V., Ibanez, J.M., Martf, J.M., and Miralles, J.A., “A New Spherically Symmetric General Relativistic Hydrodynamical Code”, Astrophys. J., 462, 839-854, (1996). 6.2.4 · doi:10.1086/177198
[140] Rothman, T., and Matzner, R.A., “Nucleosynthesis in Anisotropic Cosmologies Revisited”, Phys. Rev. D, 30, 1649-1668, (1984). 3.5 · doi:10.1103/PhysRevD.30.1649
[141] Ryan Jr, M.P., and Shepley, L.C., Homogeneous Relativistic Cosmologies, Princeton Series in Physics, (Princeton University Press, Princeton, U.S.A., 1975). 2.2, 3.1.2
[142] Ryu, D., Ostriker, J.P., Kang, H., and Cen, R., “A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme”, Astrophys. J., 414, 1-19, (1993). 6.4.3 · doi:10.1086/173051
[143] Schneider, P., Ehlers, J., and Falco, E.E., Gravitational Lenses, Astronomy and Astrophysics Library, (Springer, Berlin, Germany; New York, U.S.A., 1992). 4.2
[144] Shapiro, P.R., and Kang, H., “Hydrogen Molecules and the Radiative Cooling of Pregalactic Shocks”, Astrophys. J., 318, 32-65, (1987). 6.4.2 · doi:10.1086/165350
[145] Shapiro, P.R., and Struck-Marcell, C., “Pancakes and the Formation of Galaxies in a Universe Dominated by Collisionless Particles”, Astrophys. J. Suppl. Ser., 57, 205-239, (1985). 4.6 · doi:10.1086/191002
[146] Shibata, M., “Fully general relativistic simulation of merging binary clusters — Spatial gauge condition -”, Prog. Theor. Phys., 101, 1199-1233, (1999). 6.1.2 · doi:10.1143/PTP.101.1199
[147] Shibata, M., and Nakamura, T., “Evolution of Three-Dimensional Gravitational Waves: Harmonic Slicing Case”, Phys. Rev. D, 52, 5428-5444, (1995). 6.1.1 · Zbl 1250.83027 · doi:10.1103/PhysRevD.52.5428
[148] Shinkai, H., and Maeda, K., “Can Gravitational Waves Prevent Inflation”, Phys. Rev. D, 48, 3910-3913,(1993). 3.2.4 · doi:10.1103/PhysRevD.48.3910
[149] Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Tucker, G.S., Welland, J.L., Wollack, E., and Wright, E.L., “First Year Wilkonson Microwave Anistropy Probe (WMAP) Observations: Determination of Cosmological Parameters”, Astrophys. J. Suppl. Ser., 148, 175-194, (2003). 4.1 · doi:10.1086/377226
[150] Springel, V., White, M., and Hernquist, L., “Hydrodynamic Simulations of the Sunyaev-Zel’dovich Effect(s)”, Astrophys. J., 549, 681-687, (2001). 4.5.4 · doi:10.1086/319473
[151] Stanch, P.C., Lepp, S., and Dalgarno, A., “The Deuterium Chemistry of the Early Universe”, Astrophys. J., 509, 1-10, (1998). 6.4.2 · doi:10.1086/306473
[152] Stebbins, A., “The CMBR Spectrum”, (May, 1997). URL (cited on 29 August 2003): http://arXiv.org/abs/astro-ph/9705178. 4.1.4
[153] Susa, H., and Umemura, M., “Formation of Primordial Galaxies Under UV Background Radiation”, Astrophys. J., 537, 578-588, (2000). 4.6 · doi:10.1086/309039
[154] Tegmark, M., Zaldarriaga, M., and Hamilton, A.J.S., “Towards a refined cosmic concordance model: joint 11-parameter constraints from CMB and large-scale structure”, Phys. Rev. D, 63, 043007, (2001). 2.2 · doi:10.1103/PhysRevD.63.043007
[155] Thomas, P.A., Colberg, J.M., Couchman, H.M.P., Efstathiou, G.P., Frenk, C.S., Jenkins, A.R., Nelson, A.H., Hutchings, R.M., Peacock, J.A., Pearce, F.R., and White, S.D.M., “The structure of galaxy clusters in various cosmologies”, Mon. Not. R. Astron. Soc., 296(4), 1061-1071, (June, 1998). Related online version (cited on 3 September 1997): http://arXiv.org/abs/astro-ph/9707018. 4.5.1 · doi:10.1046/j.1365-8711.1998.01491.x
[156] Tuluie, R., Laguna, P., and Anninos, P., “Cosmic Microwave Background Anisotroples from the Rees-Sciama Effect in Ω0 ≤ 1 Universes”, Astrophys. J., 463, 15-25, (1996). 4.1.4 · doi:10.1086/177220
[157] Tuluie, R., Matzner, R.A., and Anninos, P., “Anisotropies of the Cosmic Background Radiation in a Reionized Universe”, Astrophys. J., 446, 447-456, (1995). 4.1.4 · doi:10.1086/175804
[158] Wainwright, J., and Ellis, G.F.R., Dynamical Systems in Cosmology, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1997). 2.2 · Zbl 1072.83002 · doi:10.1017/CBO9780511524660
[159] Warren, M.S., and Salmon, J.K., “A Portable Parallel Particle Program”, Computer Phys. Commun., 87, 266-290, (1995). 6.4.3 · Zbl 0923.76191 · doi:10.1016/0010-4655(94)00177-4
[160] Weaver, M., Isenberg, J.A., and Berger, B.K., “Mixmaster Behavior in Inhomogensous Cosmological Spacetimes”, Phys. Rev. Lett., 80, 2984-2987, (1998). 3.1.2 · doi:10.1103/PhysRevLett.80.2984
[161] Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (Wiley, New York, U.S.A., 1972). 6.2.3
[162] Wilson, JR; Smarr, LL (ed.), A Numerical Method for Relativistic Hydrodynamics, Proceedings of the Battelle Seattle Workshop, July 24-August 4, 1978, Cambridge, U.K.
[163] York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24-August 4, 1978, 83-126, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979). 6.1.4, 6.3 · Zbl 0723.53061
[164] Yoshida, N., Bromm, V., and Hernquist, L., “The Era of Massive Population III Stars: Cosmological Implications and Self-Termination”, Astrophys. J., 605, 579-590, (2004). 4.3 · doi:10.1086/382499
[165] Zel’dovich, Y.B., “Gravitational Instability: An Approximate Theory for Large Density Perturbations”, Astron. Astrophys., 5, 84-89, (1970). 3.6.1, 4.6, 6.4.4
[166] Zhang, Y., Norman, M.L., Anninos, P., and Meiksin, A., “Spectral Analysis of the Lya Forest in a Cold Dark Matter Cosmology”, Astrophys. J., 485, 496-516, (1997). 4.4 · doi:10.1086/304446
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.