Cianciaruso, Filomena; Pietramala, Paolamaria Semipositone nonlocal Neumann elliptic system depending on the gradient in exterior domains. (English) Zbl 07309705 J. Math. Anal. Appl. 494, No. 1, Article ID 124634, 17 p. (2021). MSC: 35 34 PDF BibTeX XML Cite \textit{F. Cianciaruso} and \textit{P. Pietramala}, J. Math. Anal. Appl. 494, No. 1, Article ID 124634, 17 p. (2021; Zbl 07309705) Full Text: DOI
Kang, Hao; Ruan, Shigui Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions. (English) Zbl 07303714 J. Differ. Equations 278, 430-462 (2021). MSC: 35F31 35R09 92D25 35P20 45K05 45A05 45G10 47D06 PDF BibTeX XML Cite \textit{H. Kang} and \textit{S. Ruan}, J. Differ. Equations 278, 430--462 (2021; Zbl 07303714) Full Text: DOI
Patil, Jayashree; Hardan, Basel; Abdo, Mohammed S.; Chaudhari, Archana; Bachhav, Amol Generalized fractional differential equations by using a fixed point theorem for generalized contractive type. (English) Zbl 07302973 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 77-88 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{J. Patil} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 77--88 (2021; Zbl 07302973) Full Text: Link
Luca, Rodica Positive solutions for a nonlocal fractional boundary value problem with \(r\)-Laplacian operator. (English. English summary) Zbl 07312926 Int. J. Difference Equ. 15, No. 2, 461-471 (2020). MSC: 34A08 34B15 45G15 PDF BibTeX XML Cite \textit{R. Luca}, Int. J. Difference Equ. 15, No. 2, 461--471 (2020; Zbl 07312926) Full Text: Link
Kadari, Halima; Nieto, Juan J.; Ouahab, Abdelghani; Oumansour, Abderrahamane Existence of solutions for implicit impulsive differential systems with coupled nonlocal conditions. (English) Zbl 07312924 Int. J. Difference Equ. 15, No. 2, 429-451 (2020). MSC: 34A07 34B37 47H30 PDF BibTeX XML Cite \textit{H. Kadari} et al., Int. J. Difference Equ. 15, No. 2, 429--451 (2020; Zbl 07312924) Full Text: Link
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K.; Alruwaily, Ymnah On a fractional integro-differential system involving Riemann-Liouville and Caputo derivatives with coupled multi-point boundary conditions. (English) Zbl 07312911 Int. J. Difference Equ. 15, No. 2, 209-241 (2020). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Int. J. Difference Equ. 15, No. 2, 209--241 (2020; Zbl 07312911) Full Text: Link
Assanova, Anar Turmaganbetkyzy; Tokmurzin, Zhanibek Syrlybaevich A nonlocal multipoint problem for a system of fourth-order partial differential equations. (English) Zbl 07311867 Eurasian Math. J. 11, No. 3, 8-20 (2020). MSC: 34B08 34B10 35G46 35L57 35S11 45J05 PDF BibTeX XML Cite \textit{A. T. Assanova} and \textit{Z. S. Tokmurzin}, Eurasian Math. J. 11, No. 3, 8--20 (2020; Zbl 07311867) Full Text: DOI MNR
Sadovnichii, V. A.; Sultanaev, Ya. T.; Akhtyamov, A. M. Degenerate three-point boundary conditions. (English. Russian original) Zbl 07304914 Differ. Equ. 56, No. 12, 1545-1549 (2020); translation from Differ. Uravn. 56, No. 12, 1591-1595 (2020). Reviewer: Erdogan Sen (Tekirdağ) MSC: 34B05 34B09 34B10 PDF BibTeX XML Cite \textit{V. A. Sadovnichii} et al., Differ. Equ. 56, No. 12, 1545--1549 (2020; Zbl 07304914); translation from Differ. Uravn. 56, No. 12, 1591--1595 (2020) Full Text: DOI
Shojaei, Arman; Hermann, Alexander; Seleson, Pablo; Cyron, Christian J. Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models. (English) Zbl 07304560 Comput. Mech. 66, No. 4, 773-793 (2020). MSC: 74 PDF BibTeX XML Cite \textit{A. Shojaei} et al., Comput. Mech. 66, No. 4, 773--793 (2020; Zbl 07304560) Full Text: DOI
Zhang, Guoqiang; Yan, Zhenya Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. (English) Zbl 07302329 Physica D 402, Article ID 132170, 14 p. (2020). MSC: 37K40 37K15 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Z. Yan}, Physica D 402, Article ID 132170, 14 p. (2020; Zbl 07302329) Full Text: DOI
Shammakh, Wafa; Alzumi, Hadeel Z.; AlQahtani, Bushra A. On more general fractional differential equations involving mixed generalized derivatives with nonlocal multipoint and generalized fractional integral boundary conditions. (English) Zbl 07300030 J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{W. Shammakh} et al., J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020; Zbl 07300030) Full Text: DOI
Ahmad, Bashir; Alghanmi, Madeaha; Alsaedi, Ahmed Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions. (English) Zbl 07297902 Rocky Mt. J. Math. 50, No. 6, 1901-1922 (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Rocky Mt. J. Math. 50, No. 6, 1901--1922 (2020; Zbl 07297902) Full Text: DOI Euclid
Tudorache, Alexandru; Luca, Rodica Positive solutions for a singular fractional boundary value problem. (English) Zbl 07292727 Math. Methods Appl. Sci. 43, No. 17, 10190-10203 (2020). MSC: 34A08 34B15 34B10 34B18 34B16 45G15 PDF BibTeX XML Cite \textit{A. Tudorache} and \textit{R. Luca}, Math. Methods Appl. Sci. 43, No. 17, 10190--10203 (2020; Zbl 07292727) Full Text: DOI
Zeĭnally, F. M. Pontryagin’s maximum principle for optimal control problems with nonlocal boundary conditions. (Russian) Zbl 07291766 J. Contemp. Appl. Math. 10, No. 1, 14-23 (2020). MSC: 49K15 34B10 34B15 PDF BibTeX XML Cite \textit{F. M. Zeĭnally}, J. Contemp. Appl. Math. 10, No. 1, 14--23 (2020; Zbl 07291766) Full Text: Link
Malaguti, Luisa; Yoshii, Kentarou Nonlocal solutions and controllability of Schrödinger evolution equation. (English) Zbl 07285151 Fixed Point Theory 21, No. 2, 657-684 (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q41 34B10 35D35 93B05 47H10 35A09 35A01 35A02 PDF BibTeX XML Cite \textit{L. Malaguti} and \textit{K. Yoshii}, Fixed Point Theory 21, No. 2, 657--684 (2020; Zbl 07285151) Full Text: Link
Rahimov, A. B. On the numerical solution to an inverse problem of recovering a source of special type in a parabolic equation. (English. Russian original) Zbl 07285125 Cybern. Syst. Anal. 56, No. 4, 611-620 (2020); translation from Kibern. Sist. Anal. 2020, No. 4, 108-118 (2020). MSC: 35R30 65M20 35K10 PDF BibTeX XML Cite \textit{A. B. Rahimov}, Cybern. Syst. Anal. 56, No. 4, 611--620 (2020; Zbl 07285125); translation from Kibern. Sist. Anal. 2020, No. 4, 108--118 (2020) Full Text: DOI
Sajavičius, Svajūnas; Takacs, Thomas Imposing nonlocal boundary conditions in Galerkin-type methods based on non-interpolatory functions. (English) Zbl 07283139 Comput. Math. Appl. 80, No. 12, 2877-2895 (2020). MSC: 65 74 PDF BibTeX XML Cite \textit{S. Sajavičius} and \textit{T. Takacs}, Comput. Math. Appl. 80, No. 12, 2877--2895 (2020; Zbl 07283139) Full Text: DOI
Mali, Ashwini D.; Kucche, Kishor D. Nonlocal boundary value problem for generalized hilfer implicit fractional differential equations. (English) Zbl 07279007 Math. Methods Appl. Sci. 43, No. 15, 8608-8631 (2020). MSC: 34A08 34A09 34B10 34D10 34A40 47N20 PDF BibTeX XML Cite \textit{A. D. Mali} and \textit{K. D. Kucche}, Math. Methods Appl. Sci. 43, No. 15, 8608--8631 (2020; Zbl 07279007) Full Text: DOI
Subramanian, Muthaiah; Manigandan, Murugesan; Gopal, Thangaraj Nandha Fractional differential equations involving Hadamard fractional derivatives with nonlocal multi-point boundary conditions. (English) Zbl 07274343 Discontin. Nonlinearity Complex. 9, No. 3, 421-431 (2020). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{M. Subramanian} et al., Discontin. Nonlinearity Complex. 9, No. 3, 421--431 (2020; Zbl 07274343) Full Text: DOI
D’Elia, Marta; Tian, Xiaochuan; Yu, Yue A physically consistent, flexible, and efficient strategy to convert local boundary conditions into nonlocal volume constraints. (English) Zbl 07271926 SIAM J. Sci. Comput. 42, No. 4, A1935-A1949 (2020). MSC: 45A05 45K05 26A33 35B40 76R50 PDF BibTeX XML Cite \textit{M. D'Elia} et al., SIAM J. Sci. Comput. 42, No. 4, A1935--A1949 (2020; Zbl 07271926) Full Text: DOI
Chebotarev, A. Yu. Inhomogeneous boundary-value problem of radiation heat transfer for a multicomponent medium. (Russian. English summary) Zbl 07268332 Dal’nevost. Mat. Zh. 20, No. 1, 108-113 (2020). MSC: 35J61 35Q79 35A01 35A02 PDF BibTeX XML Cite \textit{A. Yu. Chebotarev}, Dal'nevost. Mat. Zh. 20, No. 1, 108--113 (2020; Zbl 07268332) Full Text: MNR
Wang, Han; Jiang, Jiqiang Positive solutions to semipositone boundary value problems for fractional differential equations with multi-point boundary conditions. (Chinese. English summary) Zbl 07266984 J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 9-14 (2020). MSC: 34B18 34B10 34A08 PDF BibTeX XML Cite \textit{H. Wang} and \textit{J. Jiang}, J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 9--14 (2020; Zbl 07266984) Full Text: DOI
Pinnola, Francesco Paolo; Faghidian, S. Ali; Barretta, R.; Marotti de Sciarra, F. Variationally consistent dynamics of nonlocal gradient elastic beams. (English) Zbl 07261102 Int. J. Eng. Sci. 149, Article ID 103220, 16 p. (2020). MSC: 74 70 PDF BibTeX XML Cite \textit{F. P. Pinnola} et al., Int. J. Eng. Sci. 149, Article ID 103220, 16 p. (2020; Zbl 07261102) Full Text: DOI
Mardanov, M. J.; Sharifov, Y. A.; Sardarova, R. A.; Aliyev, H. N. Existence and uniqueness of solutions for nonlinear impulsive differential equations with three-point and integral boundary conditions. (English) Zbl 1452.34039 Azerb. J. Math. 10, No. 1, 110-126 (2020). MSC: 34B37 34B10 34A37 34B27 47N20 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Azerb. J. Math. 10, No. 1, 110--126 (2020; Zbl 1452.34039) Full Text: Link
Ahmadi, Ahmad; Samei, Mohammad Esmael On existence and uniqueness of solutions for a class of coupled system of three term fractional \(q\)-differential equations. (English) Zbl 1452.34007 J. Adv. Math. Stud. 13, No. 1, 69-80 (2020). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. Ahmadi} and \textit{M. E. Samei}, J. Adv. Math. Stud. 13, No. 1, 69--80 (2020; Zbl 1452.34007)
Garrione, Maurizio; Gazzola, Filippo Linear theory for beams with intermediate piers. (English) Zbl 1452.34033 Commun. Contemp. Math. 22, No. 8, Article ID 1950081, 41 p. (2020). Reviewer: Yanqiong Lu (Lanzhou) MSC: 34B09 34B10 34L15 74K10 35L35 PDF BibTeX XML Cite \textit{M. Garrione} and \textit{F. Gazzola}, Commun. Contemp. Math. 22, No. 8, Article ID 1950081, 41 p. (2020; Zbl 1452.34033) Full Text: DOI
Pulkina, Ludmila S. Nonlocal problems for hyperbolic equations from the viewpoint of strongly regular boundary conditions. (English) Zbl 1447.35213 Electron. J. Differ. Equ. 2020, Paper No. 28, 20 p. (2020). MSC: 35L20 35D30 34B10 PDF BibTeX XML Cite \textit{L. S. Pulkina}, Electron. J. Differ. Equ. 2020, Paper No. 28, 20 p. (2020; Zbl 1447.35213) Full Text: Link
Almomani, Raid Nonlocal mixed problems for singular parabolic equations. (English) Zbl 1446.35045 Nonlinear Funct. Anal. Appl. 25, No. 2, 363-369 (2020). MSC: 35K20 35K67 PDF BibTeX XML Cite \textit{R. Almomani}, Nonlinear Funct. Anal. Appl. 25, No. 2, 363--369 (2020; Zbl 1446.35045) Full Text: Link
Shikhare, Pallavi U.; Kucche, Kishor D.; Vanterler da Costa Sousa, José Analysis of Volterra integrodifferential equations with nonlocal and boundary conditions via Picard operator. (English) Zbl 07241633 Comput. Appl. Math. 39, No. 3, Paper No. 208, 18 p. (2020). MSC: 45J05 34G20 47H10 34B15 65L10 PDF BibTeX XML Cite \textit{P. U. Shikhare} et al., Comput. Appl. Math. 39, No. 3, Paper No. 208, 18 p. (2020; Zbl 07241633) Full Text: DOI
Faghidian, S. Ali Higher-order nonlocal gradient elasticity: a consistent variational theory. (English) Zbl 07228668 Int. J. Eng. Sci. 154, Article ID 103337, 12 p. (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{S. A. Faghidian}, Int. J. Eng. Sci. 154, Article ID 103337, 12 p. (2020; Zbl 07228668) Full Text: DOI
Zheng, Chunxiong; Du, Qiang; Ma, Xiang; Zhang, Jiwei Stability and error analysis for a second-order fast approximation of the local and nonlocal diffusion equations on the real line. (English) Zbl 1446.82045 SIAM J. Numer. Anal. 58, No. 3, 1893-1917 (2020). MSC: 82C21 65R20 46N20 45A05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{C. Zheng} et al., SIAM J. Numer. Anal. 58, No. 3, 1893--1917 (2020; Zbl 1446.82045) Full Text: DOI
Kunze, Markus C. Diffusion with nonlocal Dirichlet boundary conditions on domains. (English) Zbl 07220470 Stud. Math. 253, No. 1, 1-38 (2020). MSC: 47D07 60J35 35B40 PDF BibTeX XML Cite \textit{M. C. Kunze}, Stud. Math. 253, No. 1, 1--38 (2020; Zbl 07220470) Full Text: DOI
Mazón, José M.; Solera, Marcos; Toledo, Julián Evolution problems of Leray-Lions type with nonhomogeneous Neumann boundary conditions in metric random walk spaces. (English) Zbl 1448.35312 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111813, 37 p. (2020). MSC: 35K59 35K61 35R02 47H06 47J35 35K55 PDF BibTeX XML Cite \textit{J. M. Mazón} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111813, 37 p. (2020; Zbl 1448.35312) Full Text: DOI
Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina Evolution fractional differential problems with impulses and nonlocal conditions. (English) Zbl 1445.34091 Discrete Contin. Dyn. Syst., Ser. S 13, No. 7, 1899-1919 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34G25 34A08 34A37 34B10 47N20 PDF BibTeX XML Cite \textit{I. Benedetti} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 7, 1899--1919 (2020; Zbl 1445.34091) Full Text: DOI
Abatangelo, Nicola A remark on nonlocal Neumann conditions for the fractional Laplacian. (English) Zbl 1448.35589 Arch. Math. 114, No. 6, 699-708 (2020). MSC: 35S15 35R11 47G20 PDF BibTeX XML Cite \textit{N. Abatangelo}, Arch. Math. 114, No. 6, 699--708 (2020; Zbl 1448.35589) Full Text: DOI
Luca, Rodica Existence of solutions for a system of fractional boundary value problems. (English) Zbl 1446.34013 Math. Commun. 25, No. 1, 87-105 (2020). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{R. Luca}, Math. Commun. 25, No. 1, 87--105 (2020; Zbl 1446.34013) Full Text: Link
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. (English) Zbl 1441.34006 Fract. Calc. Appl. Anal. 23, No. 1, 268-291 (2020). MSC: 34A08 34G20 34H05 93B05 34B10 PDF BibTeX XML Cite \textit{P. Chen} et al., Fract. Calc. Appl. Anal. 23, No. 1, 268--291 (2020; Zbl 1441.34006) Full Text: DOI
Ahmad, Bashir; Matar, Mohammed M.; Ntouyas, Sotiris K. On general fractional differential inclusions with nonlocal integral boundary conditions. (English) Zbl 07191548 Differ. Equ. Dyn. Syst. 28, No. 1, 241-254 (2020). Reviewer: Vasile Lupulescu (Târgu Jiu) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Differ. Equ. Dyn. Syst. 28, No. 1, 241--254 (2020; Zbl 07191548) Full Text: DOI
Berná, Pablo M.; Rossi, Julio D. Nonlocal diffusion equations with dynamical boundary conditions. (English) Zbl 1447.45006 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111751, 25 p. (2020). MSC: 45G10 45J05 47H06 PDF BibTeX XML Cite \textit{P. M. Berná} and \textit{J. D. Rossi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111751, 25 p. (2020; Zbl 1447.45006) Full Text: DOI
Lv, Zhi-Wei Existence of positive solution for fractional differential systems with multipoint boundary value conditions. (English) Zbl 1437.34009 J. Funct. Spaces 2020, Article ID 9520430, 9 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34A08 34B18 34B10 PDF BibTeX XML Cite \textit{Z.-W. Lv}, J. Funct. Spaces 2020, Article ID 9520430, 9 p. (2020; Zbl 1437.34009) Full Text: DOI
Yan, Yonggui; Zhang, Jiwei; Zheng, Chunxiong Numerical computations of nonlocal Schrödinger equations on the real line. (English) Zbl 1449.82004 Commun. Appl. Math. Comput. 2, No. 2, 241-260 (2020). MSC: 82C21 65R20 65M60 46N20 45A05 65D32 35Q55 PDF BibTeX XML Cite \textit{Y. Yan} et al., Commun. Appl. Math. Comput. 2, No. 2, 241--260 (2020; Zbl 1449.82004) Full Text: DOI
Kandemir, Mustafa; Mukhtarov, Oktay Sh. Manypoint boundary value problems for elliptic differential-operator equations with interior singularities. (English) Zbl 1431.34037 Mediterr. J. Math. 17, No. 1, Paper No. 35, 21 p. (2020). MSC: 34B24 34L10 34L20 PDF BibTeX XML Cite \textit{M. Kandemir} and \textit{O. Sh. Mukhtarov}, Mediterr. J. Math. 17, No. 1, Paper No. 35, 21 p. (2020; Zbl 1431.34037) Full Text: DOI
Hillen, Thomas; Buttenschön, Andreas Nonlocal adhesion models for microorganisms on bounded domains. (English) Zbl 1433.92012 SIAM J. Appl. Math. 80, No. 1, 382-401 (2020). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 92C37 35Q92 PDF BibTeX XML Cite \textit{T. Hillen} and \textit{A. Buttenschön}, SIAM J. Appl. Math. 80, No. 1, 382--401 (2020; Zbl 1433.92012) Full Text: DOI Link
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Approximate controllability of non-autonomous evolution system with nonlocal conditions. (English) Zbl 1439.34065 J. Dyn. Control Syst. 26, No. 1, 1-16 (2020). MSC: 34G20 37C60 34B10 93B05 34H05 PDF BibTeX XML Cite \textit{P. Chen} et al., J. Dyn. Control Syst. 26, No. 1, 1--16 (2020; Zbl 1439.34065) Full Text: DOI
Infante, Gennaro Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence. (English) Zbl 1443.45008 Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 691-699 (2020). MSC: 45G15 45M20 34B10 34B18 47H30 PDF BibTeX XML Cite \textit{G. Infante}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 691--699 (2020; Zbl 1443.45008) Full Text: DOI
Cinti, Eleonora; Colasuonno, Francesca A nonlocal supercritical Neumann problem. (English) Zbl 1428.35659 J. Differ. Equations 268, No. 5, 2246-2279 (2020). MSC: 35R11 35J61 35B09 35B45 35A15 PDF BibTeX XML Cite \textit{E. Cinti} and \textit{F. Colasuonno}, J. Differ. Equations 268, No. 5, 2246--2279 (2020; Zbl 1428.35659) Full Text: DOI arXiv
Mertz, Laurent; Pironneau, Olivier Numerical analysis of degenerate Kolmogorov equations of constrained stochastic Hamiltonian systems. (English) Zbl 1443.65435 Comput. Math. Appl. 78, No. 8, 2719-2733 (2019). MSC: 65P10 PDF BibTeX XML Cite \textit{L. Mertz} and \textit{O. Pironneau}, Comput. Math. Appl. 78, No. 8, 2719--2733 (2019; Zbl 1443.65435) Full Text: DOI
Kolahchi, Reza; Hosseini, Hadi; Fakhar, Mohammad Hosein; Taherifar, Reza; Mahmoudi, Maryam A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions. (English) Zbl 1442.74081 Comput. Math. Appl. 78, No. 6, 2018-2034 (2019). MSC: 74H45 74S99 74G60 PDF BibTeX XML Cite \textit{R. Kolahchi} et al., Comput. Math. Appl. 78, No. 6, 2018--2034 (2019; Zbl 1442.74081) Full Text: DOI
Khalil, Hammad; Khan, Rahmat Ali; Baleanu, Dumitru; Rashidi, Mohammad Mehdi Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains. (English) Zbl 1442.35513 Comput. Math. Appl. 78, No. 6, 1826-1837 (2019). MSC: 35R11 PDF BibTeX XML Cite \textit{H. Khalil} et al., Comput. Math. Appl. 78, No. 6, 1826--1837 (2019; Zbl 1442.35513) Full Text: DOI
El-Sayed, A. M. A.; Gaafar, F. M. Positive solutions of singular Hadamard-type fractional differential equations with infinite-point boundary conditions or integral boundary conditions. (English) Zbl 07254396 Adv. Difference Equ. 2019, Paper No. 382, 26 p. (2019). MSC: 26A33 34B10 34K37 34B18 34B16 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{F. M. Gaafar}, Adv. Difference Equ. 2019, Paper No. 382, 26 p. (2019; Zbl 07254396) Full Text: DOI
Parasidis, I. N. Extension and decomposition method for differential and integro-differential equations. (English) Zbl 07240670 Eurasian Math. J. 10, No. 3, 48-67 (2019). MSC: 34B05 34K06 34K10 PDF BibTeX XML Cite \textit{I. N. Parasidis}, Eurasian Math. J. 10, No. 3, 48--67 (2019; Zbl 07240670) Full Text: DOI MNR
Yang, Yang; Yang, Yunrui; Liu, Kepan Multiple positive solutions for a class of integral boundary value problem. (English) Zbl 1449.34092 Ann. Appl. Math. 35, No. 4, 364-373 (2019). MSC: 34B18 34B10 47N20 34B08 PDF BibTeX XML Cite \textit{Y. Yang} et al., Ann. Appl. Math. 35, No. 4, 364--373 (2019; Zbl 1449.34092)
Dębowska, Kamila; Nizhnik, Leonid P. Direct and inverse spectral problems for Dirac systems with nonlocal potentials. (English) Zbl 1443.47019 Opusc. Math. 39, No. 5, 645-673 (2019). MSC: 47A75 34A55 34B10 PDF BibTeX XML Cite \textit{K. Dębowska} and \textit{L. P. Nizhnik}, Opusc. Math. 39, No. 5, 645--673 (2019; Zbl 1443.47019) Full Text: DOI
Yu, Ya Jun; Zhang, Kai; Deng, Zi Chen Buckling analyses of three characteristic-lengths featured size-dependent gradient-beam with variational consistent higher order boundary conditions. (English) Zbl 07187172 Appl. Math. Modelling 74, 1-20 (2019). MSC: 74 35 PDF BibTeX XML Cite \textit{Y. J. Yu} et al., Appl. Math. Modelling 74, 1--20 (2019; Zbl 07187172) Full Text: DOI
Fialho, João; Minhós, Feliz First order coupled systems with functional and periodic boundary conditions: existence results and application to an SIRS model. (English) Zbl 1432.34030 Axioms 8, No. 1, Paper No. 23, 11 p. (2019). MSC: 34B10 34B15 34B40 92D30 PDF BibTeX XML Cite \textit{J. Fialho} and \textit{F. Minhós}, Axioms 8, No. 1, Paper No. 23, 11 p. (2019; Zbl 1432.34030) Full Text: DOI
Mardanov, Misir J.; Sharifov, Yagub A.; Zeynalli, Farah M. Existence and uniqueness of the solutions to impulsive nonlinear integro-differential equations with nonlocal boundary conditions. (English) Zbl 1445.45015 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 2, 222-233 (2019). MSC: 45J05 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 2, 222--233 (2019; Zbl 1445.45015) Full Text: Link
Kharat, V. V.; Dhaigude, D. B.; Hasabe, D. R. On nonlinear mixed fractional integrodifferential inclusion with four-point nonlocal Riemann-Liouville integral boundary conditions. (English) Zbl 1433.34103 Indian J. Pure Appl. Math. 50, No. 4, 937-951 (2019). MSC: 34K37 34B10 34K09 45J05 PDF BibTeX XML Cite \textit{V. V. Kharat} et al., Indian J. Pure Appl. Math. 50, No. 4, 937--951 (2019; Zbl 1433.34103) Full Text: DOI
Dang Dinh, Hai; Wang, Xiao On singular \(p\)-Laplacian boundary value problems involving integral boundary conditions. (English) Zbl 1449.34067 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 90, 13 p. (2019). MSC: 34B16 34B15 34B10 34B18 34B09 PDF BibTeX XML Cite \textit{H. Dang Dinh} and \textit{X. Wang}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 90, 13 p. (2019; Zbl 1449.34067) Full Text: DOI
Abd El-Salam, Sheren Ahmed On some boundary value problems with non-local and periodic conditions. (English) Zbl 1440.34022 J. Egypt. Math. Soc. 27, Paper No. 38, 8 p. (2019). MSC: 34B10 34B15 34C25 47N20 PDF BibTeX XML Cite \textit{S. A. Abd El-Salam}, J. Egypt. Math. Soc. 27, Paper No. 38, 8 p. (2019; Zbl 1440.34022) Full Text: DOI
Pulkina, Lyadmila Stepanovna; Kirichek, Vitaliya Aleksandrovna Solvability of a nonlocal problem for a hyperbolic equation with degenerate integral conditions. (Russian. English summary) Zbl 1449.35288 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 2, 229-245 (2019). MSC: 35L15 35L99 35D30 PDF BibTeX XML Cite \textit{L. S. Pulkina} and \textit{V. A. Kirichek}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 2, 229--245 (2019; Zbl 1449.35288) Full Text: DOI MNR
Avazzadeh, Zakieh; Hassani, Hossein Transcendental Bernstein series for solving reaction-diffusion equations with nonlocal boundary conditions through the optimization technique. (English) Zbl 1431.65184 Numer. Methods Partial Differ. Equations 35, No. 6, 2258-2274 (2019). MSC: 65K10 35K57 PDF BibTeX XML Cite \textit{Z. Avazzadeh} and \textit{H. Hassani}, Numer. Methods Partial Differ. Equations 35, No. 6, 2258--2274 (2019; Zbl 1431.65184) Full Text: DOI
Ahmad, Bashir; Ntouyas, Sotiris K.; Alsaedi, Ahmed On nonlinear neutral Liouville-Caputo-type fractional differential equations with Riemann-Liouville integral boundary conditions. (English) Zbl 1435.34010 J. Appl. Anal. 25, No. 2, 119-130 (2019). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., J. Appl. Anal. 25, No. 2, 119--130 (2019; Zbl 1435.34010) Full Text: DOI
Chen, Lizhen; Ibrahim, Badawi Hamza Eibadawi; Li, Gang Nonlocal integral boundary value problem of Bagley-Torvik type fractional differential equations and inclusions. (English) Zbl 1449.34014 J. Math. Res. Appl. 39, No. 4, 383-394 (2019). MSC: 34A08 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Math. Res. Appl. 39, No. 4, 383--394 (2019; Zbl 1449.34014) Full Text: DOI
Infante, Gennaro Nonzero positive solutions of nonlocal elliptic systems with functional BCs. (English) Zbl 1433.35072 J. Elliptic Parabol. Equ. 5, No. 2, 493-505 (2019). MSC: 35J57 35J60 35B09 35A01 PDF BibTeX XML Cite \textit{G. Infante}, J. Elliptic Parabol. Equ. 5, No. 2, 493--505 (2019; Zbl 1433.35072) Full Text: DOI
Costantini, Cristina; Kurtz, Thomas G. Markov selection for constrained martingale problems. (English) Zbl 1428.60108 Electron. J. Probab. 24, Paper No. 135, 31 p. (2019). MSC: 60J25 60J50 60J60 60H30 PDF BibTeX XML Cite \textit{C. Costantini} and \textit{T. G. Kurtz}, Electron. J. Probab. 24, Paper No. 135, 31 p. (2019; Zbl 1428.60108) Full Text: DOI Euclid arXiv
Wang, JinRong; Ibrahim, Gamal; O’Regan, Donal Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions. (English) Zbl 1439.34015 Nonlinear Anal., Model. Control 24, No. 6, 958-984 (2019). MSC: 34A08 34B10 34A37 34G20 93B05 34H05 PDF BibTeX XML Cite \textit{J. Wang} et al., Nonlinear Anal., Model. Control 24, No. 6, 958--984 (2019; Zbl 1439.34015) Full Text: DOI
Dyuzheva, A. V. A problem with an integral condition of the first kind for an equation of the fourth order. (Russian. English summary) Zbl 1429.35155 Vestn. Samar. Univ., Estestvennonauchn. Ser. 25, No. 1, 21-31 (2019). MSC: 35L35 35L82 PDF BibTeX XML Cite \textit{A. V. Dyuzheva}, Vestn. Samar. Univ., Estestvennonauchn. Ser. 25, No. 1, 21--31 (2019; Zbl 1429.35155) Full Text: DOI MNR
Hazanee, A.; Lesnic, D.; Ismailov, M. I.; Kerimov, N. B. Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions. (English) Zbl 1428.80011 Appl. Math. Comput. 346, 800-815 (2019). MSC: 80A23 35K20 35K91 35R30 65M32 PDF BibTeX XML Cite \textit{A. Hazanee} et al., Appl. Math. Comput. 346, 800--815 (2019; Zbl 1428.80011) Full Text: DOI
Chergui, Djamila; Oussaeif, Taki Eddine; Ahcene, Merad Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. (English) Zbl 1429.34011 AIMS Math. 4, No. 1, 112-133 (2019). MSC: 34A08 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{D. Chergui} et al., AIMS Math. 4, No. 1, 112--133 (2019; Zbl 1429.34011) Full Text: DOI
Lizama, Carlos; Rueda, Silvia Nonlocal integrated solutions for a class of abstract evolution equations. (English) Zbl 07127986 Acta Appl. Math. 164, No. 1, 165-183 (2019). MSC: 47D06 34B10 47H08 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{S. Rueda}, Acta Appl. Math. 164, No. 1, 165--183 (2019; Zbl 07127986) Full Text: DOI
Rahmoune, Abita; Benabderrahmane, Benyattou Quasilinear parabolic equations with \(p(x)\)-Laplacian diffusion terms and nonlocal boundary conditions. (English) Zbl 1438.35211 Stud. Univ. Babeş-Bolyai, Math. 64, No. 1, 103-118 (2019). MSC: 35K20 35K59 35B45 35D30 PDF BibTeX XML Cite \textit{A. Rahmoune} and \textit{B. Benabderrahmane}, Stud. Univ. Babeş-Bolyai, Math. 64, No. 1, 103--118 (2019; Zbl 1438.35211) Full Text: DOI
Cefalo, Massimo; Creo, Simone; Lancia, Maria Rosaria; Vernole, Paola Nonlocal Venttsel’ diffusion in fractal-type domains: regularity results and numerical approximation. (English) Zbl 1423.35132 Math. Methods Appl. Sci. 42, No. 14, 4712-4733 (2019). MSC: 35K05 65M60 65M15 35K20 PDF BibTeX XML Cite \textit{M. Cefalo} et al., Math. Methods Appl. Sci. 42, No. 14, 4712--4733 (2019; Zbl 1423.35132) Full Text: DOI arXiv
Gupta, Vidushi; Bora, Swaroop Nandan; Nieto, Juan J. Dhage iterative principle for quadratic perturbation of fractional boundary value problems with finite delay. (English) Zbl 1429.34078 Math. Methods Appl. Sci. 42, No. 12, 4244-4255 (2019). MSC: 34K37 26A33 47H10 34K10 34K07 PDF BibTeX XML Cite \textit{V. Gupta} et al., Math. Methods Appl. Sci. 42, No. 12, 4244--4255 (2019; Zbl 1429.34078) Full Text: DOI
Sun, Jiong; Bao, Qinglan; Hao, Xiaoling; Zettl, Anton Characterization of self-adjoint domains for regular even order \(C\)-symmetric differential operators. (English) Zbl 1449.47082 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 62, 17 p. (2019). MSC: 47E05 34B10 PDF BibTeX XML Cite \textit{J. Sun} et al., Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 62, 17 p. (2019; Zbl 1449.47082) Full Text: DOI
Ahmad, Bashir; Alghamdi, Najla; Alsaedi, Ahmed; Ntouya, Sotiris K. A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions. (English) Zbl 1428.34006 Fract. Calc. Appl. Anal. 22, No. 3, 601-618 (2019). MSC: 34A08 26A33 34B10 34B09 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Fract. Calc. Appl. Anal. 22, No. 3, 601--618 (2019; Zbl 1428.34006) Full Text: DOI
Qi, Tingting; Zhang, Zhenfu; Liu, Yansheng Existence of positive solutions for fractional differential system with coupled integral boundary conditions. (Chinese. English summary) Zbl 1438.34051 J. Shandong Univ., Nat. Sci. 54, No. 2, 71-78 (2019). MSC: 34A08 34B18 34B10 47N20 PDF BibTeX XML Cite \textit{T. Qi} et al., J. Shandong Univ., Nat. Sci. 54, No. 2, 71--78 (2019; Zbl 1438.34051) Full Text: DOI
Mardanov, Misir J.; Sharifov, Yagub A.; Ismayilova, Kamala E.; Zamanova, Sevinc A. Existence and uniqueness of solutions for the system of first-order nonlinear differential equations with three-point and integral boundary conditions. (English) Zbl 1438.34085 Eur. J. Pure Appl. Math. 12, No. 3, 756-770 (2019). MSC: 34B10 34B15 34B27 47N20 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Eur. J. Pure Appl. Math. 12, No. 3, 756--770 (2019; Zbl 1438.34085) Full Text: Link
Ghanmii, Abdeljabbar; Jebari, Rochdi; Zhang, Ziheng Multiplicity results for a boundary value problem with integral boundary conditions. (English) Zbl 1423.34030 S\(\vec{\text{e}}\)MA J. 76, No. 2, 365-381 (2019). MSC: 34B18 34B15 34B10 47N20 34B27 PDF BibTeX XML Cite \textit{A. Ghanmii} et al., S\(\vec{\text{e}}\)MA J. 76, No. 2, 365--381 (2019; Zbl 1423.34030) Full Text: DOI
Costa, A. C. R.; Ferreira, M. C.; Tavares, Leandro S. On a nonlocal nonhomogeneous Neumann boundary problem with two critical exponents. (English) Zbl 1425.35040 Complex Var. Elliptic Equ. 64, No. 11, 1954-1972 (2019). MSC: 35J60 35J70 58E05 PDF BibTeX XML Cite \textit{A. C. R. Costa} et al., Complex Var. Elliptic Equ. 64, No. 11, 1954--1972 (2019; Zbl 1425.35040) Full Text: DOI
Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differential equations with nonlocal conditions. (English) Zbl 1438.34017 Adv. Theory Nonlinear Anal. Appl. 3, No. 1, 46-52 (2019). MSC: 34A08 45N05 34A09 34B10 47N20 PDF BibTeX XML Cite \textit{A. Ardjouni} and \textit{A. Djoudi}, Adv. Theory Nonlinear Anal. Appl. 3, No. 1, 46--52 (2019; Zbl 1438.34017) Full Text: DOI
Di, Bin; Pang, Huihui Existence results for the fractional differential equations with multi-strip integral boundary conditions. (English) Zbl 1422.34029 J. Appl. Math. Comput. 59, No. 1-2, 1-19 (2019). MSC: 34A08 34B10 34B15 34B18 47N20 PDF BibTeX XML Cite \textit{B. Di} and \textit{H. Pang}, J. Appl. Math. Comput. 59, No. 1--2, 1--19 (2019; Zbl 1422.34029) Full Text: DOI
Chaouchi, Belkacem; Kostić, Marko An efficient abstract method for the study of an initial boundary value problem on singular domain. (English) Zbl 1438.34206 Afr. Mat. 30, No. 3-4, 551-562 (2019). MSC: 34G10 47D03 34B10 34B09 PDF BibTeX XML Cite \textit{B. Chaouchi} and \textit{M. Kostić}, Afr. Mat. 30, No. 3--4, 551--562 (2019; Zbl 1438.34206) Full Text: DOI arXiv
Korzyuk, V. I.; Kozlovskaya, I. S.; Naumavets, S. N. Classical solution of a problem with integral conditions of the second kind for the one-dimensional wave equation. (English. Russian original) Zbl 1416.35154 Differ. Equ. 55, No. 3, 353-362 (2019); translation from Differ. Uravn. 55, No. 3, 361-369 (2019). MSC: 35L20 35A09 35A01 35A02 PDF BibTeX XML Cite \textit{V. I. Korzyuk} et al., Differ. Equ. 55, No. 3, 353--362 (2019; Zbl 1416.35154); translation from Differ. Uravn. 55, No. 3, 361--369 (2019) Full Text: DOI
Szymańska-Dȩbowska, Katarzyna; Zima, Mirosława A topological degree approach to a nonlocal Neumann problem for a system at resonance. (English) Zbl 07077797 J. Fixed Point Theory Appl. 21, No. 2, Paper No. 67, 14 p. (2019). MSC: 34B10 34B15 47H10 54H25 PDF BibTeX XML Cite \textit{K. Szymańska-Dȩbowska} and \textit{M. Zima}, J. Fixed Point Theory Appl. 21, No. 2, Paper No. 67, 14 p. (2019; Zbl 07077797) Full Text: DOI
Chalishajar, Dimplekumar N.; Karthikeyan, K. Existence of mild solutions for second order nonlocal impulsive neutral evolution equations with state-dependent infinite delay. (English) Zbl 1423.34088 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 1, 53-68 (2019). Reviewer: Haydar Akca (Abu Dhabi) MSC: 34K30 47D09 34K40 34K45 34K10 PDF BibTeX XML Cite \textit{D. N. Chalishajar} and \textit{K. Karthikeyan}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 1, 53--68 (2019; Zbl 1423.34088) Full Text: Link
Fialho, João; Minhós, Feliz Existence results for functional first-order coupled systems and applications. (English) Zbl 1422.34102 Math. Methods Appl. Sci. 42, No. 7, 2398-2403 (2019). Reviewer: Minghe Pei (Jilin) MSC: 34B10 34B15 34B40 47N20 PDF BibTeX XML Cite \textit{J. Fialho} and \textit{F. Minhós}, Math. Methods Appl. Sci. 42, No. 7, 2398--2403 (2019; Zbl 1422.34102) Full Text: DOI
Kirane, Mokhtar; Sadybekov, Makhmud A.; Sarsenbi, Abdisalam A. On an inverse problem of reconstructing a subdiffusion process from nonlocal data. (English) Zbl 1414.35103 Math. Methods Appl. Sci. 42, No. 6, 2043-2052 (2019). MSC: 35K20 35L15 35R11 35R30 34K06 35K05 PDF BibTeX XML Cite \textit{M. Kirane} et al., Math. Methods Appl. Sci. 42, No. 6, 2043--2052 (2019; Zbl 1414.35103) Full Text: DOI
Zamir, Muhammad; Shah, Kamal; Chohan, Muhammad Ikhlaq Stability theory and existence of solution to a multi-point boundary value problem of fractional differential equations. (English) Zbl 1452.34016 Math. Sci., Springer 13, No. 1, 53-60 (2019). MSC: 34A08 34B10 34A25 PDF BibTeX XML Cite \textit{M. Zamir} et al., Math. Sci., Springer 13, No. 1, 53--60 (2019; Zbl 1452.34016) Full Text: DOI
Kal’menov, Tynysbek Sh.; Torebek, Berikbol T. A method for solving ill-posed nonlocal problem for the elliptic equation with data on the whole boundary. (English) Zbl 1418.35114 J. Pseudo-Differ. Oper. Appl. 10, No. 1, 177-185 (2019). MSC: 35J25 35C10 35P10 PDF BibTeX XML Cite \textit{T. Sh. Kal'menov} and \textit{B. T. Torebek}, J. Pseudo-Differ. Oper. Appl. 10, No. 1, 177--185 (2019; Zbl 1418.35114) Full Text: DOI
Zaera, Ramon; Serrano, Ó.; Fernández-Sáez, J. On the consistency of the nonlocal strain gradient elasticity. (English) Zbl 1425.74053 Int. J. Eng. Sci. 138, 65-81 (2019). MSC: 74A60 PDF BibTeX XML Cite \textit{R. Zaera} et al., Int. J. Eng. Sci. 138, 65--81 (2019; Zbl 1425.74053) Full Text: DOI
Sadybekov, Makhmud A.; Dukenbayeva, Aishabibi A. Direct and inverse problems for the Poisson equation with equality of flows on a part of the boundary. (English) Zbl 1417.35014 Complex Var. Elliptic Equ. 64, No. 5, 777-791 (2019). MSC: 35J05 35J25 35R30 PDF BibTeX XML Cite \textit{M. A. Sadybekov} and \textit{A. A. Dukenbayeva}, Complex Var. Elliptic Equ. 64, No. 5, 777--791 (2019; Zbl 1417.35014) Full Text: DOI
Rao, Sabbavarapu Nageswara; Alesemi, Meshari On a coupled system of fractional differential equations with nonlocal non-separated boundary conditions. (English) Zbl 07040266 Adv. Difference Equ. 2019, Paper No. 97, 14 p. (2019). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{S. N. Rao} and \textit{M. Alesemi}, Adv. Difference Equ. 2019, Paper No. 97, 14 p. (2019; Zbl 07040266) Full Text: DOI
Pulkina, Ludmila S.; Beylin, Alexander B. Nonlocal approach to problems on longitudinal vibration in a short bar. (English) Zbl 1409.35135 Electron. J. Differ. Equ. 2019, Paper No. 29, 9 p. (2019). MSC: 35L35 PDF BibTeX XML Cite \textit{L. S. Pulkina} and \textit{A. B. Beylin}, Electron. J. Differ. Equ. 2019, Paper No. 29, 9 p. (2019; Zbl 1409.35135) Full Text: Link
Zhao, Kaihong; Huang, Hui Existence results of nonlocal boundary value problem for a nonlinear fractional differential coupled system involving fractional order impulses. (English) Zbl 07020811 Adv. Difference Equ. 2019, Paper No. 36, 13 p. (2019). MSC: 34B10 34B15 34B37 PDF BibTeX XML Cite \textit{K. Zhao} and \textit{H. Huang}, Adv. Difference Equ. 2019, Paper No. 36, 13 p. (2019; Zbl 07020811) Full Text: DOI
Darhouche, Omar Existence and multiplicity results for a class of Kirchhoff type problems involving the \(p(x)\)-biharmonic operator. (English) Zbl 1413.35014 Bol. Soc. Parana. Mat. (3) 37, No. 2, 23-33 (2019). MSC: 35A15 35J35 46E35 PDF BibTeX XML Cite \textit{O. Darhouche}, Bol. Soc. Parana. Mat. (3) 37, No. 2, 23--33 (2019; Zbl 1413.35014) Full Text: Link
Alsaedi, Ahmed; Ntouyas, Sotiris K.; Garout, Doa’a; Ahmad, Bashir Coupled fractional-order systems with nonlocal coupled integral and discrete boundary conditions. (English) Zbl 1407.34004 Bull. Malays. Math. Sci. Soc. (2) 42, No. 1, 241-266 (2019). MSC: 34A08 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Bull. Malays. Math. Sci. Soc. (2) 42, No. 1, 241--266 (2019; Zbl 1407.34004) Full Text: DOI
Sapagovas, Mifodijus; Novickij, Jurij; Štikonas, Artūras Stability analysis of a weighted difference scheme for two-dimensional hyperbolic equations with integral conditions. (English) Zbl 1407.65129 Electron. J. Differ. Equ. 2019, Paper No. 04, 13 p. (2019). MSC: 65M06 35L20 35P30 15A18 PDF BibTeX XML Cite \textit{M. Sapagovas} et al., Electron. J. Differ. Equ. 2019, Paper No. 04, 13 p. (2019; Zbl 1407.65129) Full Text: Link
Babu, Bishweshwar; Patel, B. P. Analytical solution for strain gradient elastic Kirchhoff rectangular plates under transverse static loading. (English) Zbl 1406.74430 Eur. J. Mech., A, Solids 73, 101-111 (2019). MSC: 74K20 74G10 PDF BibTeX XML Cite \textit{B. Babu} and \textit{B. P. Patel}, Eur. J. Mech., A, Solids 73, 101--111 (2019; Zbl 1406.74430) Full Text: DOI
Kim, Seonghak; Yan, Baisheng On one-dimensional forward-backward diffusion equations with linear convection and reaction. (English) Zbl 1406.35165 J. Differ. Equations 266, No. 2-3, 1578-1604 (2019). Reviewer: Andrey Zahariev (Plovdiv) MSC: 35K65 35M13 35K57 35D30 49K21 PDF BibTeX XML Cite \textit{S. Kim} and \textit{B. Yan}, J. Differ. Equations 266, No. 2--3, 1578--1604 (2019; Zbl 1406.35165) Full Text: DOI
Yu, Yue; Bargos, Fabiano F.; You, Huaiqian; Parks, Michael L.; Bittencourt, Marco L.; Karniadakis, George E. A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. (English) Zbl 1440.74045 Comput. Methods Appl. Mech. Eng. 340, 905-931 (2018). MSC: 74A45 74S05 65N30 PDF BibTeX XML Cite \textit{Y. Yu} et al., Comput. Methods Appl. Mech. Eng. 340, 905--931 (2018; Zbl 1440.74045) Full Text: DOI