×

Found 1,844 Documents (Results 1–100)

100
MathJax

Approximate analytical solutions to nonlinear damped oscillatory systems using a modified algebraic method. (English. Russian original) Zbl 1459.65105

J. Appl. Mech. Tech. Phys. 62, No. 1, 70-78 (2021); translation from Prikl. Mekh. Tekh. Fiz. 62, No. 1, 78-87 (2021).
MSC:  65L05 34C15
PDF BibTeX XML Cite
Full Text: DOI

Application of a stochastic version of the restoring force surface method to identify a Duffing oscillator. (English) Zbl 07438023

Lacarbonara, Walter (ed.) et al., Nonlinear dynamics of structures, systems and devices. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume I. Cham: Springer. 299-307 (2020).
MSC:  74-XX
PDF BibTeX XML Cite
Full Text: DOI

\( \varepsilon^2\)-order normal form analysis for a two-degree-of-freedom nonlinear coupled oscillator. (English) Zbl 1479.70061

Lacarbonara, Walter (ed.) et al., Nonlinear dynamics of structures, systems and devices. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume I. Cham: Springer. 25-33 (2020).
MSC:  70K45
PDF BibTeX XML Cite
Full Text: DOI

Helmholtz, Duffing and Helmholtz-Duffing oscillators: exact steady-state solutions. (English) Zbl 1482.70022

Kovacic, Ivana (ed.) et al., IUTAM symposium on exploiting nonlinear dynamics for engineering systems. ENOLIDES 2018. Proceedings of the IUTAM symposium, Novi Sad, Serbia, July 15–19, 2018. Cham: Springer. IUTAM Bookser. 37, 167-177 (2020).
MSC:  70K99 34C15
PDF BibTeX XML Cite
Full Text: DOI

Energy harvesting in a Duffing oscillator with modulated delay amplitude. (English) Zbl 1478.74035

Kovacic, Ivana (ed.) et al., IUTAM symposium on exploiting nonlinear dynamics for engineering systems. ENOLIDES 2018. Proceedings of the IUTAM symposium, Novi Sad, Serbia, July 15–19, 2018. Cham: Springer. IUTAM Bookser. 37, 121-130 (2020).
MSC:  74H45 74F15 70K28
PDF BibTeX XML Cite
Full Text: DOI

Connectionist learning models for application problems involving differential and integral equations. (English) Zbl 07324108

Chakraverty, Snehashish (ed.), Mathematical methods in interdisciplinary sciences. Hoboken, NJ: John Wiley & Sons. 1-22 (2020).
MSC:  74-XX 76-XX 80-XX
PDF BibTeX XML Cite
Full Text: DOI

Amplitude equations and bifurcation diagrams for multifrequency synchronization of canonical-dissipative oscillators. (English) Zbl 1453.34077

Reviewer: Hao Wu (Nanjing)
MSC:  34D06 34C15 34C46
PDF BibTeX XML Cite
Full Text: DOI

Filter Results by …

Document Type

Reviewing State

all top 5

Author

all top 5

Serial

all top 5

Year of Publication

all top 3

Classification