×

Periodic dynamics of coupled cell networks. II: Cyclic symmetry. (English) Zbl 1162.37010

Authors’ abstract: A coupled cell network is a directed graph whose nodes represent dynamical systems and whose directed edges specify how those systems are coupled to each other. The typical dynamic behaviour of a network is strongly constrained by its topology. Especially important constraints arise from global (group) symmetries and local (groupoid) symmetries. The H/K theorem of Buono and Golubitsky characterises the possible spatio-temporal symmetries of time-periodic states of group-equivariant dynamical systems. A version of this theorem for group-symmetric networks has been proved by Josic and Torok. In networks, spatial symmetries correspond to synchrony of cells, and spatio-temporal symmetries correspond to phase relations between cells. Associated with any coupled cell network is a canonical class of admissible ODEs that respect the network topology. A pattern of synchrony or phase relations in a hyperbolic time-periodic state of such an ODE is rigid if the pattern persists under small admissible perturbations. We characterise rigid patterns of synchrony and rigid phase patterns in coupled cell networks, on the assumption that the periodic state is fully oscillatory (no cell is in equilibrium) and the network has a basic property, the rigid phase property. We conjecture that all networks have the rigid phase property, and that in any path-connected network an admissible ODE with a hyperbolic periodic state can always be perturbed to make the perturbed periodic state fully oscillatory. Our main result states that in any path-connected network with the rigid phase property, every rigid pattern of phase relations can be characterised in two stages. First, sets of cells form synchronous clumps according to a balanced equivalence relation. Second, the corresponding quotient network has a cyclic group of automorphisms, and the phase relations are induced by associating a fixed phase shift with a generator of this group. Thus the clumps of synchronous cells form a discrete rotating wave. As a corollary, we prove an analogue of the H/K theorem for any path-connected network. We also discuss the non-path-connected case.
[For part I, cf. ibid. 22, No. 4, 389–450 (2007; Zbl 1162.37312).]

MSC:

37C10 Dynamics induced by flows and semiflows
34C14 Symmetries, invariants of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37L20 Symmetries of infinite-dimensional dissipative dynamical systems
34C25 Periodic solutions to ordinary differential equations

Citations:

Zbl 1162.37312
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1088/0951-7715/18/5/016 · Zbl 1079.37061 · doi:10.1088/0951-7715/18/5/016
[2] DOI: 10.1142/S0218127406015167 · Zbl 1145.37019 · doi:10.1142/S0218127406015167
[3] DOI: 10.1103/PhysRevE.63.066219 · doi:10.1103/PhysRevE.63.066219
[4] DOI: 10.1007/BF01209171 · doi:10.1007/BF01209171
[5] DOI: 10.1112/blms/19.2.113 · Zbl 0612.20032 · doi:10.1112/blms/19.2.113
[6] DOI: 10.1007/s002850000058 · Zbl 1039.92007 · doi:10.1007/s002850000058
[7] DOI: 10.1109/TCSI.2001.972857 · Zbl 0999.94030 · doi:10.1109/TCSI.2001.972857
[8] DOI: 10.1112/S0024610704005241 · Zbl 1049.37009 · doi:10.1112/S0024610704005241
[9] Gambaryan PP, How Mammals Run: Anatomical Adaptations (1974)
[10] DOI: 10.1007/s00332-003-0593-6 · Zbl 1136.37359 · doi:10.1007/s00332-003-0593-6
[11] DOI: 10.1007/978-3-0348-8167-8 · doi:10.1007/978-3-0348-8167-8
[12] DOI: 10.1016/S0167-2789(97)00222-4 · Zbl 1039.92009 · doi:10.1016/S0167-2789(97)00222-4
[13] DOI: 10.1038/44416 · doi:10.1038/44416
[14] DOI: 10.1007/978-1-4612-4574-2 · doi:10.1007/978-1-4612-4574-2
[15] DOI: 10.1137/040612634 · Zbl 1090.34030 · doi:10.1137/040612634
[16] Higgins PJ, Notes on Categories and Groupoids, Van Nostrand Reinhold Mathematical Studies 32 (1971)
[17] Hirsch MW, Invariant Manifolds, Lecture Notes in Mathematics 583 (1977)
[18] DOI: 10.1016/j.physd.2006.09.024 · Zbl 1118.34032 · doi:10.1016/j.physd.2006.09.024
[19] DOI: 10.1017/CBO9780511809187 · doi:10.1017/CBO9780511809187
[20] DOI: 10.1002/cpa.3160390504 · Zbl 0596.92011 · doi:10.1002/cpa.3160390504
[21] DOI: 10.1016/0025-5564(88)90059-4 · Zbl 0649.92009 · doi:10.1016/0025-5564(88)90059-4
[22] DOI: 10.1073/pnas.91.22.10586 · doi:10.1073/pnas.91.22.10586
[23] DOI: 10.1142/5506 · doi:10.1142/5506
[24] Mosekilde E, Chaotic Synchronization (2002) · doi:10.1142/4845
[25] DOI: 10.1016/S0896-6273(00)80821-1 · doi:10.1016/S0896-6273(00)80821-1
[26] DOI: 10.1137/S1111111103419896 · Zbl 1089.34032 · doi:10.1137/S1111111103419896
[27] Stewart IN, Periodic dynamics of coupled cell networks I: rigid patterns of synchrony and phase relations, Dynamical Systems 22 pp 389– · Zbl 1162.37312
[28] Stewart IN, Periodic dynamics of coupled cell networks III: homogeneous networks
[29] Tutte WT, Graph Theory, Encyclopaedia of Mathematics and Its Applications 21 (1984)
[30] DOI: 10.1142/S0218127402004802 · Zbl 1044.37561 · doi:10.1142/S0218127402004802
[31] DOI: 10.1088/0951-7715/18/2/010 · Zbl 1066.34049 · doi:10.1088/0951-7715/18/2/010
[32] Wilson RJ, Introduction to Graph Theory, 3. ed. (1985)
[33] Wu CW, Synchronization in Coupled Chaotic Circuits and Systems (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.