Bellido, José C.; Ortega, Alejandro A restricted nonlocal operator bridging together the Laplacian and the fractional Laplacian. (English) Zbl 07334923 Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 71, 29 p. (2021). MSC: 35R11 35S15 49J45 47G20 45G05 PDF BibTeX XML Cite \textit{J. C. Bellido} and \textit{A. Ortega}, Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 71, 29 p. (2021; Zbl 07334923) Full Text: DOI
Dong, Hongjie; Gao, Yuan Existence and uniqueness of bounded stable solutions to the Peierls-Nabarro model for curved dislocations. (English) Zbl 07334914 Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 62, 26 p. (2021). MSC: 35A02 35J50 35Q74 35R11 35J60 PDF BibTeX XML Cite \textit{H. Dong} and \textit{Y. Gao}, Calc. Var. Partial Differ. Equ. 60, No. 2, Paper No. 62, 26 p. (2021; Zbl 07334914) Full Text: DOI
Abbaszadeh, Mostafa; Dehghan, Mehdi Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation. (English) Zbl 07332907 Appl. Math. Comput. 392, Article ID 125718, 21 p. (2021). MSC: 65M70 34A34 PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Appl. Math. Comput. 392, Article ID 125718, 21 p. (2021; Zbl 07332907) Full Text: DOI
Chen, Wenjing; Gui, Yuyan Existence and multiplicity of solutions for fractional Laplacian system. (English) Zbl 07332656 Appl. Anal. 100, No. 6, 1327-1350 (2021). MSC: 35J20 35J60 47G20 PDF BibTeX XML Cite \textit{W. Chen} and \textit{Y. Gui}, Appl. Anal. 100, No. 6, 1327--1350 (2021; Zbl 07332656) Full Text: DOI
Mai, Viet Thuan; Nguyen, Thi Huyen Thu; Nguyen, Huu Sau; Nguyen, Thi Thanh Huyen New results on \(H_\infty\) control for nonlinear conformable fractional order systems. (English) Zbl 07331552 J. Syst. Sci. Complex. 34, No. 1, 140-156 (2021). MSC: 93B36 93C15 26A33 93D23 93C10 PDF BibTeX XML Cite \textit{V. T. Mai} et al., J. Syst. Sci. Complex. 34, No. 1, 140--156 (2021; Zbl 07331552) Full Text: DOI
Bhauryal, Neeraj; Koley, Ujjwal; Vallet, Guy A fractional degenerate parabolic-hyperbolic Cauchy problem with noise. (English) Zbl 07330807 J. Differ. Equations 284, 433-521 (2021). MSC: 35R11 35R09 35R60 35L65 PDF BibTeX XML Cite \textit{N. Bhauryal} et al., J. Differ. Equations 284, 433--521 (2021; Zbl 07330807) Full Text: DOI
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed; Torres, Cesar Infinitely many solutions for a nonlocal type problem with sign-changing weight function. (English) Zbl 07329790 Electron. J. Differ. Equ. 2021, Paper No. 16, 15 p. (2021). MSC: 35P30 35J20 58E05 35R09 35R11 PDF BibTeX XML Cite \textit{E. Azroul} et al., Electron. J. Differ. Equ. 2021, Paper No. 16, 15 p. (2021; Zbl 07329790) Full Text: Link
Giacomoni, Jacques; Gouasmia, Abdelhamid; Mokrane, Abdelhafid Existence and global behavior of weak solutions to a doubly nonlinear evolution fractional \(p\)-Laplacian equation. (English) Zbl 07329783 Electron. J. Differ. Equ. 2021, Paper No. 09, 37 p. (2021). MSC: 35R11 35B40 35D30 35K59 35K65 PDF BibTeX XML Cite \textit{J. Giacomoni} et al., Electron. J. Differ. Equ. 2021, Paper No. 09, 37 p. (2021; Zbl 07329783) Full Text: Link
Chen, Wenjing Existence of solutions for critical fractional \(p\)&\(q\)-Laplacian system. (English) Zbl 07327589 Complex Var. Elliptic Equ. 66, No. 4, 626-641 (2021). MSC: 35J60 35B33 35R11 35A01 35J50 PDF BibTeX XML Cite \textit{W. Chen}, Complex Var. Elliptic Equ. 66, No. 4, 626--641 (2021; Zbl 07327589) Full Text: DOI
De Nápoli, Pablo; Fernández Bonder, Julián; Salort, Ariel A Pólya-Szegö principle for general fractional Orlicz-Sobolev spaces. (English) Zbl 07327584 Complex Var. Elliptic Equ. 66, No. 4, 546-568 (2021). MSC: 46E30 35R11 45G05 PDF BibTeX XML Cite \textit{P. De Nápoli} et al., Complex Var. Elliptic Equ. 66, No. 4, 546--568 (2021; Zbl 07327584) Full Text: DOI
Wang, Wenbo; Yu, Yuanyang; Li, Yongkun On the asymptotically cubic fractional Schrödinger-Poisson system. (English) Zbl 07327334 Appl. Anal. 100, No. 4, 695-713 (2021). MSC: 35J60 35R11 35J50 PDF BibTeX XML Cite \textit{W. Wang} et al., Appl. Anal. 100, No. 4, 695--713 (2021; Zbl 07327334) Full Text: DOI
Liu, Chungen; Zhang, Huabo Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. (English) Zbl 07327306 Commun. Pure Appl. Anal. 20, No. 2, 817-834 (2021). MSC: 35J60 35R11 35Q61 35A01 35J50 PDF BibTeX XML Cite \textit{C. Liu} and \textit{H. Zhang}, Commun. Pure Appl. Anal. 20, No. 2, 817--834 (2021; Zbl 07327306) Full Text: DOI
Cuesta, Eduardo; Ponce, Rodrigo Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces. (English) Zbl 07327227 Comput. Math. Appl. 85, 57-68 (2021). MSC: 26 65 PDF BibTeX XML Cite \textit{E. Cuesta} and \textit{R. Ponce}, Comput. Math. Appl. 85, 57--68 (2021; Zbl 07327227) Full Text: DOI
Vougalter, Vitali Solvability of some integro-differential equations with anomalous diffusion in higher dimensions. (English) Zbl 07327117 Complex Var. Elliptic Equ. 66, No. 1, 165-179 (2021). MSC: 35R09 35R11 35A01 35P30 47F05 PDF BibTeX XML Cite \textit{V. Vougalter}, Complex Var. Elliptic Equ. 66, No. 1, 165--179 (2021; Zbl 07327117) Full Text: DOI
Belbali, Hadjer; Benbachir, Maamar Stability for coupled systems on networks with Caputo-Hadamard fractional derivative. (English) Zbl 07326411 J. Math. Model. 9, No. 1, 107-118 (2021). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{H. Belbali} and \textit{M. Benbachir}, J. Math. Model. 9, No. 1, 107--118 (2021; Zbl 07326411) Full Text: DOI
Nain, Ankit Kumar; Vats, Ramesh Kumar; Kumar, Avadhesh Caputo-Hadamard fractional differential equation with impulsive boundary conditions. (English) Zbl 07326410 J. Math. Model. 9, No. 1, 93-106 (2021). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{A. K. Nain} et al., J. Math. Model. 9, No. 1, 93--106 (2021; Zbl 07326410) Full Text: DOI
Akgül, Ali; Akgül, Esra Karatas Solving a new type of fractional differential equation by reproducing kernel method. (English) Zbl 07326305 Hammouch, Zakia (ed.) et al., Nonlinear analysis: problems, applications and computational methods. Proceedings of the 6th international congress of the Moroccan Society of Applied Mathematics, Beni-Mellal, Morocco, November 7–9, 2019. Cham: Springer (ISBN 978-3-030-62298-5/pbk; 978-3-030-62299-2/ebook). Lecture Notes in Networks and Systems 168, 34-43 (2021). MSC: 34A08 34B15 34A45 PDF BibTeX XML Cite \textit{A. Akgül} and \textit{E. K. Akgül}, Lect. Notes Netw. Syst. 168, 34--43 (2021; Zbl 07326305) Full Text: DOI
Coville, Jérôme; Gui, Changfeng; Zhao, Mingfeng Propagation acceleration in reaction diffusion equations with anomalous diffusions. (English) Zbl 07324160 Nonlinearity 34, No. 3, 1544-1576 (2021). MSC: 35C07 35B51 35K15 35K55 35K57 35R09 35R11 PDF BibTeX XML Cite \textit{J. Coville} et al., Nonlinearity 34, No. 3, 1544--1576 (2021; Zbl 07324160) Full Text: DOI
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via phaselift. (English) Zbl 07323237 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). MSC: 65M32 65T50 49M37 90C25 35R11 35R60 60G60 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 07323237) Full Text: DOI
Yin, Chuntao Chaos detection of the Chen system with Caputo-Hadamard fractional derivative. (English) Zbl 07321547 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021). MSC: 34A34 34A08 34C28 34D08 37D45 PDF BibTeX XML Cite \textit{C. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021; Zbl 07321547) Full Text: DOI
Musina, Roberta; Nazarov, Alexander I. Complete classification and nondegeneracy of minimizers for the fractional Hardy-Sobolev inequality, and applications. (English) Zbl 07319433 J. Differ. Equations 280, 292-314 (2021). MSC: 35R11 35B20 35P99 35J60 35B25 53C43 58E05 PDF BibTeX XML Cite \textit{R. Musina} and \textit{A. I. Nazarov}, J. Differ. Equations 280, 292--314 (2021; Zbl 07319433) Full Text: DOI
Tyagi, J. Sturm-Picone theorem for fractional nonlocal equations. (English) Zbl 07319385 Anal. Math. Phys. 11, No. 2, Paper No. 61, 13 p. (2021). MSC: 35J60 35R11 35J67 35A15 PDF BibTeX XML Cite \textit{J. Tyagi}, Anal. Math. Phys. 11, No. 2, Paper No. 61, 13 p. (2021; Zbl 07319385) Full Text: DOI
Seadawy, Aly R.; Bilal, M.; Younis, M.; Rizvi, S. T. R. Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. (English) Zbl 1455.35243 Int. J. Mod. Phys. B 35, No. 3, Article ID 2150044, 18 p. (2021). MSC: 35Q55 35R11 35C08 35A25 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Int. J. Mod. Phys. B 35, No. 3, Article ID 2150044, 18 p. (2021; Zbl 1455.35243) Full Text: DOI
Khan, Yasir Novel soliton solutions of the fractal Biswas-Milovic model arising in Photonics. (English) Zbl 1455.35235 Int. J. Mod. Phys. B 35, No. 1, Article ID 2150001, 15 p. (2021). MSC: 35Q55 35R11 35C08 PDF BibTeX XML Cite \textit{Y. Khan}, Int. J. Mod. Phys. B 35, No. 1, Article ID 2150001, 15 p. (2021; Zbl 1455.35235) Full Text: DOI
Huan, Diem Dang; Agarwal, Ravi P. Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Lévy noise. (English) Zbl 07318773 Stoch. Dyn. 21, No. 2, Article ID 2150013, 24 p. (2021). MSC: 35R60 35R12 93B05 35B35 39B82 93E03 60H15 PDF BibTeX XML Cite \textit{D. D. Huan} and \textit{R. P. Agarwal}, Stoch. Dyn. 21, No. 2, Article ID 2150013, 24 p. (2021; Zbl 07318773) Full Text: DOI
Zhou, Jue-liang; Zhang, Shu-qin; He, Yu-bo Existence and stability of solution for a nonlinear fractional differential equation. (English) Zbl 07318435 J. Math. Anal. Appl. 498, No. 1, Article ID 124921, 14 p. (2021). MSC: 34K37 34K30 34K27 47N20 PDF BibTeX XML Cite \textit{J.-l. Zhou} et al., J. Math. Anal. Appl. 498, No. 1, Article ID 124921, 14 p. (2021; Zbl 07318435) Full Text: DOI
Shen, Zifei; Shang, Bin; Qian, Chenyin Existence of sign-changing solutions for \(p(x)\)-Laplacian Kirchhoff type problem in \(\mathbb{R}^N\). (English) Zbl 07317366 J. Math. Soc. Japan 73, No. 1, 161-183 (2021). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Z. Shen} et al., J. Math. Soc. Japan 73, No. 1, 161--183 (2021; Zbl 07317366) Full Text: DOI Euclid
Chen, Xueying; Bao, Gejun; Li, Guanfeng Monotonicity of solutions for the uniformly elliptic nonlocal Bellman equation on the upper half space. (English) Zbl 07316451 J. Math. Anal. Appl. 496, No. 2, Article ID 124843, 19 p. (2021). MSC: 35J60 35R11 30B50 35A02 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Math. Anal. Appl. 496, No. 2, Article ID 124843, 19 p. (2021; Zbl 07316451) Full Text: DOI
Ding, Pengyan; Yang, Zhijian Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping. (English) Zbl 07316097 J. Math. Anal. Appl. 496, No. 1, Article ID 124785, 26 p. (2021). MSC: 35B41 35L35 35L77 35R09 35R11 74K10 PDF BibTeX XML Cite \textit{P. Ding} and \textit{Z. Yang}, J. Math. Anal. Appl. 496, No. 1, Article ID 124785, 26 p. (2021; Zbl 07316097) Full Text: DOI
Duong, Anh Tuan; Le, Phuong; Nguyen, Nhu Thang Symmetry and nonexistence results for a fractional Choquard equation with weights. (English) Zbl 07314352 Discrete Contin. Dyn. Syst. 41, No. 2, 489-505 (2021). MSC: 35R11 35B06 35B53 45G10 PDF BibTeX XML Cite \textit{A. T. Duong} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 489--505 (2021; Zbl 07314352) Full Text: DOI
Bachar, Imed; Mâagli, Habib; Eltayeb, Hassan Existence and uniqueness of solutions for fractional boundary value problems under mild Lipschitz condition. (English) Zbl 07311233 J. Funct. Spaces 2021, Article ID 6666015, 6 p. (2021). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{I. Bachar} et al., J. Funct. Spaces 2021, Article ID 6666015, 6 p. (2021; Zbl 07311233) Full Text: DOI
Biala, T. A.; Khaliq, Abdul Q. M. Predictor-corrector schemes for nonlinear space-fractional parabolic PDEs with time-dependent boundary conditions. (English) Zbl 07310760 Appl. Numer. Math. 160, 1-22 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M22 65M06 65N06 65D32 65L10 41A21 35R11 PDF BibTeX XML Cite \textit{T. A. Biala} and \textit{A. Q. M. Khaliq}, Appl. Numer. Math. 160, 1--22 (2021; Zbl 07310760) Full Text: DOI
Huang, Jianfei; Zhang, Jingna; Arshad, Sadia; Tang, Yifa A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. (English) Zbl 07310750 Appl. Numer. Math. 159, 159-173 (2021). MSC: 65M06 65M12 35R09 35R11 PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Numer. Math. 159, 159--173 (2021; Zbl 07310750) Full Text: DOI
Shao, Jie; Guo, Boling The Cauchy problem for Schrödinger-damped Boussinesq system. (English) Zbl 07310660 J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021). MSC: 35Q35 35Q55 35B44 35A01 35A02 35R11 PDF BibTeX XML Cite \textit{J. Shao} and \textit{B. Guo}, J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021; Zbl 07310660) Full Text: DOI
Kossowski, Igor; Przeradzki, Bogdan Nonlinear equations with a generalized fractional Laplacian. (English) Zbl 07309505 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 58, 13 p. (2021). MSC: 35R11 35J60 35P05 47A60 47J05 PDF BibTeX XML Cite \textit{I. Kossowski} and \textit{B. Przeradzki}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 58, 13 p. (2021; Zbl 07309505) Full Text: DOI
Ding, Mengyao; Zhang, Chao; Zhou, Shulin Local boundedness and Hölder continuity for the parabolic fractional \(p\)-Laplace equations. (English) Zbl 07309248 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 38, 45 p. (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B65 35R11 35K55 35D30 PDF BibTeX XML Cite \textit{M. Ding} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 38, 45 p. (2021; Zbl 07309248) Full Text: DOI
Zhang, Yang Optimizers of the Sobolev and Gagliardo-Nirenberg inequalities in \(\dot{W}^{s,p} \). (English) Zbl 07309154 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 10, 24 p. (2021). MSC: 35J60 35A15 35R11 46E35 PDF BibTeX XML Cite \textit{Y. Zhang}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 10, 24 p. (2021; Zbl 07309154) Full Text: DOI
Bui, The Anh; Bui, The Quan; Duong, Xuan Thinh Regularity estimates for the Cauchy problem to a parabolic equation associated to fractional harmonic oscillators. (English) Zbl 07308686 J. Differ. Equations 279, 162-197 (2021). MSC: 35B65 35R11 35K08 47J35 35K15 PDF BibTeX XML Cite \textit{T. A. Bui} et al., J. Differ. Equations 279, 162--197 (2021; Zbl 07308686) Full Text: DOI
Calanchi, Marta; Tomei, Carlos Positive eigenvectors and simple nonlinear maps. (English) Zbl 07306986 J. Funct. Anal. 280, No. 7, Article ID 108823, 36 p. (2021). MSC: 35J05 35R11 47H11 47H30 58K05 PDF BibTeX XML Cite \textit{M. Calanchi} and \textit{C. Tomei}, J. Funct. Anal. 280, No. 7, Article ID 108823, 36 p. (2021; Zbl 07306986) Full Text: DOI
Azroul, E.; Benkirane, A.; Shimi, M.; Srati, M. On a class of fractional \(p(x)\)-Kirchhoff type problems. (English) Zbl 07305251 Appl. Anal. 100, No. 2, 383-402 (2021). MSC: 35R11 35D30 35J92 35J25 35R09 35P30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Appl. Anal. 100, No. 2, 383--402 (2021; Zbl 07305251) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Hou, Baohui; Liang, Dong Time fourth-order energy-preserving AVF finite difference method for nonlinear space-fractional wave equations. (English) Zbl 07305144 J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021). MSC: 65M06 65M12 65M15 35C08 37K06 35R11 PDF BibTeX XML Cite \textit{B. Hou} and \textit{D. Liang}, J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021; Zbl 07305144) Full Text: DOI
Prakasa Rao, B. L. S. Nonparametric estimation of trend for stochastic differential equations driven by fractional Levy process. (English) Zbl 07302995 J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021). MSC: 62G07 62M09 60G15 60G22 60G65 60H15 PDF BibTeX XML Cite \textit{B. L. S. Prakasa Rao}, J. Stat. Theory Pract. 15, No. 1, Paper No. 7, 12 p. (2021; Zbl 07302995) Full Text: DOI
Bahrouni, Sabri; Ounaies, Hichem Strauss and Lions type theorems for the fractional Sobolev spaces with variable exponent and applications to nonlocal Kirchhoff-Choquard problem. (English) Zbl 07302846 Mediterr. J. Math. 18, No. 2, Paper No. 46, 22 p. (2021). MSC: 35J60 35R11 46E35 35A01 PDF BibTeX XML Cite \textit{S. Bahrouni} and \textit{H. Ounaies}, Mediterr. J. Math. 18, No. 2, Paper No. 46, 22 p. (2021; Zbl 07302846) Full Text: DOI
Caballero, Josefa; Harjani, J.; Sadarangani, K. Existence and uniqueness of positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. (English) Zbl 07302474 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021). MSC: 34A08 34B10 34B18 47N20 34B16 PDF BibTeX XML Cite \textit{J. Caballero} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021; Zbl 07302474) Full Text: DOI
Au, Vo Van; Jafari, Hossein; Hammouch, Zakia; Tuan, Nguyen Huy On a final value problem for a nonlinear fractional pseudo-parabolic equation. (English) Zbl 1456.35114 Electron Res. Arch. 29, No. 1, 1709-1734 (2021). MSC: 35K70 35K92 35R11 35R25 47A52 47J06 PDF BibTeX XML Cite \textit{V. Van Au} et al., Electron Res. Arch. 29, No. 1, 1709--1734 (2021; Zbl 1456.35114) Full Text: DOI
Wang, Hui; Zhang, Lingling Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions. (English) Zbl 07300226 Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021). Reviewer: Syed Abbas (Mandi) MSC: 34 26A33 34A34 34B10 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Zhang}, Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021; Zbl 07300226) Full Text: DOI
Djeghali, Nadia; Bettayeb, Maamar; Djennoune, Said Sliding mode active disturbance rejection control for uncertain nonlinear fractional-order systems. (English) Zbl 1455.93018 Eur. J. Control 57, 54-67 (2021). MSC: 93B12 93C41 93C10 93C15 26A33 PDF BibTeX XML Cite \textit{N. Djeghali} et al., Eur. J. Control 57, 54--67 (2021; Zbl 1455.93018) Full Text: DOI
Shakerian, Shaya Multiple positive solutions for nonlocal elliptic problems involving the Hardy potential and concave-convex nonlinearities. (English) Zbl 07298839 Commun. Contemp. Math. 23, No. 2, Article ID 2050008, 30 p. (2021). MSC: 35J60 35R11 35A01 35B09 35J20 PDF BibTeX XML Cite \textit{S. Shakerian}, Commun. Contemp. Math. 23, No. 2, Article ID 2050008, 30 p. (2021; Zbl 07298839) Full Text: DOI
Macías-Díaz, Jorge E. A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation. (English) Zbl 1456.65074 Numer. Algorithms 86, No. 1, 75-102 (2021). MSC: 65M06 65M12 74K05 74H45 74B20 35R11 35Q74 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Numer. Algorithms 86, No. 1, 75--102 (2021; Zbl 1456.65074) Full Text: DOI
Hallaci, Ahmed; Boulares, Hamid; Ardjouni, Abdelouaheb; Chaoui, Abderrazak New existence results for fractional differential equations in a weighted Sobolev space. (English) Zbl 07297939 Rend. Mat. Appl., VII. Ser. 42, No. 1, 35-48 (2021). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{A. Hallaci} et al., Rend. Mat. Appl., VII. Ser. 42, No. 1, 35--48 (2021; Zbl 07297939) Full Text: Link
Cao, Daomin; Jia, Huifang; Luo, Xiao Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. (English) Zbl 07297749 J. Differ. Equations 276, 228-263 (2021). MSC: 35J60 35R11 35Q55 35A01 35B40 35B35 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 276, 228--263 (2021; Zbl 07297749) Full Text: DOI
Van Thin, Nguyen; Xiang, Mingqi; Zhang, Binlin On critical Schrödinger-Kirchhoff-type problems involving the fractional \(p\)-Laplacian with potential vanishing at infinity. (English) Zbl 1456.35223 Mediterr. J. Math. 18, No. 1, Paper No. 1, 27 p. (2021). MSC: 35R11 35J92 35A15 35J60 PDF BibTeX XML Cite \textit{N. Van Thin} et al., Mediterr. J. Math. 18, No. 1, Paper No. 1, 27 p. (2021; Zbl 1456.35223) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 1456.35246 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 1456.35246) Full Text: DOI
Vanterler da C. Sousa, J.; Jarad, Fahd; Abdeljawad, Thabet Existence of mild solutions to Hilfer fractional evolution equations in Banach space. (English) Zbl 07296612 Ann. Funct. Anal. 12, No. 1, Paper No. 12, 16 p. (2021). MSC: 34A08 34G20 34A37 34B10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Ann. Funct. Anal. 12, No. 1, Paper No. 12, 16 p. (2021; Zbl 07296612) Full Text: DOI
Martínez-Guerra, Rafael; Meléndez-Vázquez, Fidel; Trejo-Zúñiga, Iván Fault-tolerant control and diagnosis for integer and fractional-order systems. Fundamentals of fractional calculus and differential algebra with real-time applications. (English) Zbl 07296433 Studies in Systems, Decision and Control 328. Cham: Springer (ISBN 978-3-030-62093-6/hbk; 978-3-030-62094-3/ebook). xxii, 192 p. (2021). MSC: 93-02 34-02 93C15 34A08 93B35 93B10 93B07 93B11 93C10 PDF BibTeX XML Cite \textit{R. Martínez-Guerra} et al., Fault-tolerant control and diagnosis for integer and fractional-order systems. Fundamentals of fractional calculus and differential algebra with real-time applications. Cham: Springer (2021; Zbl 07296433) Full Text: DOI
Li, Linyan; Shu, Ji; Bai, Qianqian; Li, Hui Asymptotic behavior of fractional stochastic heat equations in materials with memory. (English) Zbl 07291038 Appl. Anal. 100, No. 1, 145-166 (2021). MSC: 37L55 37L65 37L30 35R60 60H15 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Anal. 100, No. 1, 145--166 (2021; Zbl 07291038) Full Text: DOI
Fazly, Mostafa; Yang, Wen On stable and finite Morse index solutions of the fractional Toda system. (English) Zbl 1455.35284 J. Funct. Anal. 280, No. 4, Article ID 108870, 36 p. (2021). MSC: 35R11 35B53 35B45 35B08 37B30 45K05 45G15 PDF BibTeX XML Cite \textit{M. Fazly} and \textit{W. Yang}, J. Funct. Anal. 280, No. 4, Article ID 108870, 36 p. (2021; Zbl 1455.35284) Full Text: DOI
del Mar González, María; Lee, Ki-Ahm; Lee, Taehun Optimal configuration and symmetry breaking phenomena in the composite membrane problem with fractional Laplacian. (English) Zbl 1455.35282 J. Differ. Equations 274, 1165-1208 (2021). MSC: 35R11 35P05 35J25 35J87 35R35 49R05 PDF BibTeX XML Cite \textit{M. del Mar González} et al., J. Differ. Equations 274, 1165--1208 (2021; Zbl 1455.35282) Full Text: DOI
Cunha, Alysson; Pastor, Ademir Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces. (English) Zbl 1455.35034 J. Differ. Equations 274, 1067-1114 (2021). MSC: 35B60 35G25 35A01 35Q53 35R11 PDF BibTeX XML Cite \textit{A. Cunha} and \textit{A. Pastor}, J. Differ. Equations 274, 1067--1114 (2021; Zbl 1455.35034) Full Text: DOI
Mugnai, Dimitri; Proietti Lippi, Edoardo Linking over cones for the Neumann fractional \(p\)-Laplacian. (English) Zbl 1454.35412 J. Differ. Equations 271, 797-820 (2021). MSC: 35R11 35J92 35J25 35A15 47J30 35S15 47G10 45G05 35P30 PDF BibTeX XML Cite \textit{D. Mugnai} and \textit{E. Proietti Lippi}, J. Differ. Equations 271, 797--820 (2021; Zbl 1454.35412) Full Text: DOI
Feng, Xiaojing Nontrivial solution for Schrödinger-Poisson equations involving the fractional Laplacian with critical exponent. (English) Zbl 1454.35137 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021). MSC: 35J60 35R11 35B33 35A15 35A01 PDF BibTeX XML Cite \textit{X. Feng}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021; Zbl 1454.35137) Full Text: DOI
D’Abbicco, M.; Fujiwara, K. A test function method for evolution equations with fractional powers of the Laplace operator. (English) Zbl 1450.35264 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112114, 23 p. (2021). MSC: 35R11 35B33 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{M. D'Abbicco} and \textit{K. Fujiwara}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112114, 23 p. (2021; Zbl 1450.35264) Full Text: DOI
Gu, Guangze; Tang, Xianhua; Shen, Jianxia Multiple solutions for fractional Schrödinger-Poisson system with critical or supercritical nonlinearity. (English) Zbl 1448.35193 Appl. Math. Lett. 111, Article ID 106605, 7 p. (2021). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{G. Gu} et al., Appl. Math. Lett. 111, Article ID 106605, 7 p. (2021; Zbl 1448.35193) Full Text: DOI
Binhua, Feng; Chen, Ruipeng; Liu, Jiayin Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation. (English) Zbl 1447.35291 Adv. Nonlinear Anal. 10, 311-330 (2021). MSC: 35Q55 35J10 35B44 35B35 35R11 26A33 PDF BibTeX XML Cite \textit{F. Binhua} et al., Adv. Nonlinear Anal. 10, 311--330 (2021; Zbl 1447.35291) Full Text: DOI
Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Combination of Lucas wavelets with Legendre-Gauss quadrature for fractional Fredholm-Volterra integro-differential equations. (English) Zbl 1452.65403 J. Comput. Appl. Math. 382, Article ID 113070, 17 p. (2021). MSC: 65R20 45J05 45G10 65D32 PDF BibTeX XML Cite \textit{H. Dehestani} et al., J. Comput. Appl. Math. 382, Article ID 113070, 17 p. (2021; Zbl 1452.65403) Full Text: DOI
Malti, Ahmed Ilyes N.; Benchohra, Mouffak; Graef, John R.; Lazreg, Jamal-Eddine Impulsive boundary value problems for nonlinear implicit Caputo-exponential type fractional differential equations. (English) Zbl 07334632 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 78, 17 p. (2020). MSC: 26A33 34A08 34A37 34B15 34B37 PDF BibTeX XML Cite \textit{A. I. N. Malti} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 78, 17 p. (2020; Zbl 07334632) Full Text: DOI
Vanterler da Costa Sousa, José Existence results and continuity dependence of solutions for fractional equations. (English) Zbl 07332058 Differ. Equ. Appl. 12, No. 4, 377-396 (2020). MSC: 26A33 34A08 34A12 34A60 34G20 PDF BibTeX XML Cite \textit{J. Vanterler da Costa Sousa}, Differ. Equ. Appl. 12, No. 4, 377--396 (2020; Zbl 07332058) Full Text: DOI
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K. Fractional order nonlinear mixed coupled systems with coupled integro-differential boundary conditions. (English) Zbl 07331961 J. Appl. Anal. Comput. 10, No. 3, 892-903 (2020). MSC: 26A33 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., J. Appl. Anal. Comput. 10, No. 3, 892--903 (2020; Zbl 07331961) Full Text: DOI
Su, Xiaofeng; Fu, Xianlong Approximate controllability of second-order semilinear evolution systems with state-dependent infinite delay. (English) Zbl 07331955 J. Appl. Anal. Comput. 10, No. 3, 1118-1148 (2020). MSC: 93B05 93C10 93C43 93C23 34K35 26A33 PDF BibTeX XML Cite \textit{X. Su} and \textit{X. Fu}, J. Appl. Anal. Comput. 10, No. 3, 1118--1148 (2020; Zbl 07331955) Full Text: DOI
Liu, Jian-Gen; Yang, Xiao-Jun; Feng, Yi-Ying; Zhang, Hong-Yi Analysis of the time fractional nonlinear diffusion equation from diffusion process. (English) Zbl 07331950 J. Appl. Anal. Comput. 10, No. 3, 1060-1072 (2020). MSC: 22E70 35D99 35K05 35L65 35Q51 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., J. Appl. Anal. Comput. 10, No. 3, 1060--1072 (2020; Zbl 07331950) Full Text: DOI
Min, Dandan; Chen, Fangqi Existence of solutions for a fractional advection-dispersion equation with impulsive effects via variational approach. (English) Zbl 07331946 J. Appl. Anal. Comput. 10, No. 3, 1005-1023 (2020). MSC: 26A33 35A15 34B15 PDF BibTeX XML Cite \textit{D. Min} and \textit{F. Chen}, J. Appl. Anal. Comput. 10, No. 3, 1005--1023 (2020; Zbl 07331946) Full Text: DOI
Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations. (English) Zbl 07329941 J. Egypt. Math. Soc. 28, Paper No. 30, 14 p. (2020). MSC: 65K 65H 65L 65D 65F 65Fxx 65Hxx 65Dxx 65Lxx 65Kxx PDF BibTeX XML Cite \textit{A. J. Ferrari} et al., J. Egypt. Math. Soc. 28, Paper No. 30, 14 p. (2020; Zbl 07329941) Full Text: DOI
Japundžić, Miloš; Rajter-Ćirić, Danijela Fractional nonlinear stochastic heat equation with variable thermal conductivity. (English) Zbl 07329885 Fract. Calc. Appl. Anal. 23, No. 6, 1762-1782 (2020). MSC: 26A33 35R11 46F30 60G20 PDF BibTeX XML Cite \textit{M. Japundžić} and \textit{D. Rajter-Ćirić}, Fract. Calc. Appl. Anal. 23, No. 6, 1762--1782 (2020; Zbl 07329885) Full Text: DOI
Bayram, Mustafa; Secer, Aydin; Adiguzel, Hakan The asymptotic behavior of solutions of discrete nonlinear fractional equations. (English) Zbl 07329867 Fract. Calc. Appl. Anal. 23, No. 5, 1472-1482 (2020). MSC: 26A33 34A08 39A21 39A10 PDF BibTeX XML Cite \textit{M. Bayram} et al., Fract. Calc. Appl. Anal. 23, No. 5, 1472--1482 (2020; Zbl 07329867) Full Text: DOI
Almushaira, Mustafa; Liu, Fei Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations. (English) Zbl 07328513 SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 45, 28 p. (2020). MSC: 35Q41 35R11 65M06 65M12 65N06 65T50 PDF BibTeX XML Cite \textit{M. Almushaira} and \textit{F. Liu}, SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 45, 28 p. (2020; Zbl 07328513) Full Text: DOI
Bieganowski, Bartosz; Secchi, Simone Non-local to local transition for ground states of fractional Schrödinger equations on \(\mathbb{R}^N\). (English) Zbl 07328267 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 76, 15 p. (2020). MSC: 35Q55 35A15 35R11 35R01 PDF BibTeX XML Cite \textit{B. Bieganowski} and \textit{S. Secchi}, J. Fixed Point Theory Appl. 22, No. 3, Paper No. 76, 15 p. (2020; Zbl 07328267) Full Text: DOI
Gao, Peng Averaging principle for multiscale stochastic fractional Schrödinger-Korteweg-de Vries system. (English) Zbl 07327983 J. Stat. Phys. 181, No. 5, 1781-1816 (2020). MSC: 70K65 70K70 35Q53 35Q55 60H15 PDF BibTeX XML Cite \textit{P. Gao}, J. Stat. Phys. 181, No. 5, 1781--1816 (2020; Zbl 07327983) Full Text: DOI
Vougalter, Vitali On the solvability of some systems of integro-differential equations with anomalous diffusion in two dimensions. (English) Zbl 07326949 Pure Appl. Funct. Anal. 5, No. 2, 489-503 (2020). MSC: 35J05 35R11 35A01 35P30 PDF BibTeX XML Cite \textit{V. Vougalter}, Pure Appl. Funct. Anal. 5, No. 2, 489--503 (2020; Zbl 07326949) Full Text: Link
Garain, Prashanta; Mukherjee, Tuhina Quasilinear nonlocal elliptic problems with variable singular exponent. (English) Zbl 07326925 Commun. Pure Appl. Anal. 19, No. 11, 5059-5075 (2020). MSC: 35J60 35J92 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{P. Garain} and \textit{T. Mukherjee}, Commun. Pure Appl. Anal. 19, No. 11, 5059--5075 (2020; Zbl 07326925) Full Text: DOI
He, Xiaoming; Zhao, Xin; Zou, Wenming Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. (English) Zbl 07326897 Commun. Pure Appl. Anal. 19, No. 9, 4387-4399 (2020). MSC: 35J60 35J20 35R11 35S15 PDF BibTeX XML Cite \textit{X. He} et al., Commun. Pure Appl. Anal. 19, No. 9, 4387--4399 (2020; Zbl 07326897) Full Text: DOI
Wahash, Hanan A.; Panchal, Satish K.; Abdo, Mohammed S. Positive solutions for generalized Caputo fractional differential equations with integral boundary conditions. (English) Zbl 07326400 J. Math. Model. 8, No. 4, 393-414 (2020). MSC: 34A08 34B15 34A12 58C30 PDF BibTeX XML Cite \textit{H. A. Wahash} et al., J. Math. Model. 8, No. 4, 393--414 (2020; Zbl 07326400) Full Text: DOI
Khalouta, Ali; Kadem, Abdelouahab New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems. (English) Zbl 07325564 Rev. Colomb. Mat. 54, No. 1, 1-11 (2020). MSC: 35R11 26A33 74G10 34K28 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Rev. Colomb. Mat. 54, No. 1, 1--11 (2020; Zbl 07325564) Full Text: DOI
Zhao, Jingjun; Zhang, Yanming; Xu, Yang Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation. (English) Zbl 07323511 Appl. Math. Comput. 386, Article ID 125505, 14 p. (2020). MSC: 65L20 PDF BibTeX XML Cite \textit{J. Zhao} et al., Appl. Math. Comput. 386, Article ID 125505, 14 p. (2020; Zbl 07323511) Full Text: DOI
Khamessi, Bilel Fractional boundary value problem on the half-line. (English) Zbl 07323322 J. Math. Phys. Anal. Geom. 16, No. 1, 27-45 (2020). MSC: 34A08 34B40 34B18 47N20 PDF BibTeX XML Cite \textit{B. Khamessi}, J. Math. Phys. Anal. Geom. 16, No. 1, 27--45 (2020; Zbl 07323322) Full Text: DOI
Hadid, S.; Khuri, S. A.; Sayfy, A. A Green’s function iterative approach for the solution of a class of fractional BVPs arising in physical models. (English) Zbl 1456.65052 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 91, 13 p. (2020). MSC: 65L10 34A08 34B15 PDF BibTeX XML Cite \textit{S. Hadid} et al., Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 91, 13 p. (2020; Zbl 1456.65052) Full Text: DOI
Merzoug, I.; Guezane-Lakoud, A.; Khaldi, R. Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem. (English) Zbl 07321718 Rend. Circ. Mat. Palermo (2) 69, No. 3, 1099-1106 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34B15 34A08 26A33 47N20 PDF BibTeX XML Cite \textit{I. Merzoug} et al., Rend. Circ. Mat. Palermo (2) 69, No. 3, 1099--1106 (2020; Zbl 07321718) Full Text: DOI
Zitane, Hanaa; Larhrissi, Rachid; Boutoulout, Ali Fractional output stabilization for a class of bilinear distributed systems. (English) Zbl 07321694 Rend. Circ. Mat. Palermo (2) 69, No. 3, 737-752 (2020). MSC: 93D15 93C15 26A33 93C10 PDF BibTeX XML Cite \textit{H. Zitane} et al., Rend. Circ. Mat. Palermo (2) 69, No. 3, 737--752 (2020; Zbl 07321694) Full Text: DOI
Fournier, Nicolas; Perthame, Benoît Transport distances for PDEs: the coupling method. (English) Zbl 07319883 EMS Surv. Math. Sci. 7, No. 1, 1-31 (2020). MSC: 35B40 35B45 35Q20 35Q49 35Q84 35K55 35R11 PDF BibTeX XML Cite \textit{N. Fournier} and \textit{B. Perthame}, EMS Surv. Math. Sci. 7, No. 1, 1--31 (2020; Zbl 07319883) Full Text: DOI
Chen, Lu; Liu, Zhao; Lu, Guozhen; Tao, Chunxia Stein-Weiss inequalities with the fractional Poisson kernel. (English) Zbl 07318485 Rev. Mat. Iberoam. 36, No. 5, 1289-1308 (2020). MSC: 35A23 35R11 35B40 45G15 PDF BibTeX XML Cite \textit{L. Chen} et al., Rev. Mat. Iberoam. 36, No. 5, 1289--1308 (2020; Zbl 07318485) Full Text: DOI
Dinh, Van Duong Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials. (English) Zbl 07316380 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252-3292 (2020). MSC: 35R11 35A15 35B44 35J61 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252--3292 (2020; Zbl 07316380) Full Text: DOI
Bardi, Martino; Cesaroni, Annalisa; Topp, Erwin Cauchy problem and periodic homogenization for nonlocal Hamilton-Jacobi equations with coercive gradient terms. (English) Zbl 07316369 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3028-3059 (2020). MSC: 35B27 35B51 35F21 35R09 35R11 35F25 35D40 PDF BibTeX XML Cite \textit{M. Bardi} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3028--3059 (2020; Zbl 07316369) Full Text: DOI
Wu, Yuan; Yuan, Xiaoping On the existence of full dimensional KAM torus for fractional nonlinear Schrödinger equation. (English) Zbl 1455.37061 J. Appl. Anal. Comput. 10, No. 2, 771-794 (2020). MSC: 37K55 35Q55 35R11 PDF BibTeX XML Cite \textit{Y. Wu} and \textit{X. Yuan}, J. Appl. Anal. Comput. 10, No. 2, 771--794 (2020; Zbl 1455.37061) Full Text: DOI
Li, Dongping; Chen, Fangqi; An, Yukun Positive solutions for a \(p\)-Laplacian type system of impulsive fractional boundary value problem. (English) Zbl 07315120 J. Appl. Anal. Comput. 10, No. 2, 740-759 (2020). MSC: 34A08 34B18 34B37 58E50 PDF BibTeX XML Cite \textit{D. Li} et al., J. Appl. Anal. Comput. 10, No. 2, 740--759 (2020; Zbl 07315120) Full Text: DOI
Wang, Jingqun; Tian, Lixin Boundary controllability for the time-fractional nonlinear Korteweg-de Vries (KdV) equation. (English) Zbl 07315119 J. Appl. Anal. Comput. 10, No. 2, 411-426 (2020). MSC: 93B05 93C20 35Q53 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Tian}, J. Appl. Anal. Comput. 10, No. 2, 411--426 (2020; Zbl 07315119) Full Text: DOI
Eslami, Mostafa; Rezazadeh, Hadi Multi-step conformable fractional differential transform method for solving and stability of the conformable fractional differential systems. (English) Zbl 07314452 Casp. J. Math. Sci. 9, No. 2, 340-348 (2020). MSC: 34D20 26A33 34A34 PDF BibTeX XML Cite \textit{M. Eslami} and \textit{H. Rezazadeh}, Casp. J. Math. Sci. 9, No. 2, 340--348 (2020; Zbl 07314452) Full Text: DOI
Vivek, D.; Baghani, Omid; Kanagarajan, K. Existence results for hybrid fractional differential equations with Hilfer fractional derivative. (English) Zbl 07314449 Casp. J. Math. Sci. 9, No. 2, 294-304 (2020). MSC: 26A33 34A08 34B18 PDF BibTeX XML Cite \textit{D. Vivek} et al., Casp. J. Math. Sci. 9, No. 2, 294--304 (2020; Zbl 07314449) Full Text: DOI
Mansouri, A.; Rezapour, Sh. Investigating a solution of a multi-singular pointwise defined fractional integro-differential equation with Caputo derivative boundary condition. (English) Zbl 1454.45004 J. Math. Ext. 14, No. 2, 15-47 (2020). MSC: 45J05 34A08 34B16 PDF BibTeX XML Cite \textit{A. Mansouri} and \textit{Sh. Rezapour}, J. Math. Ext. 14, No. 2, 15--47 (2020; Zbl 1454.45004) Full Text: Link
Khalouta, Ali; Kadem, Abdelouahab A new iterative natural transform method for solving nonlinear Caputo time-fractional partial differential equations. (English) Zbl 07314246 Jordan J. Math. Stat. 13, No. 3, 459-476 (2020). MSC: 35R11 26A33 83C15 74G10 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Jordan J. Math. Stat. 13, No. 3, 459--476 (2020; Zbl 07314246) Full Text: Link
Derbazi, Choukri; Hammouche, Hadda Existence and uniqueness results for a class of nonlinear fractional differential equations with nonlocal boundary conditions. (English) Zbl 07314239 Jordan J. Math. Stat. 13, No. 3, 341-361 (2020). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{C. Derbazi} and \textit{H. Hammouche}, Jordan J. Math. Stat. 13, No. 3, 341--361 (2020; Zbl 07314239) Full Text: Link