Lan, Kunquan; Lin, Wei Steady-state solutions of one-dimensional competition models in an unstirred chemostat via the fixed point index theory. (English) Zbl 07316399 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240-264 (2021). MSC: 45G15 34B18 47H10 47H30 92B05 PDF BibTeX XML Cite \textit{K. Lan} and \textit{W. Lin}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240--264 (2021; Zbl 07316399) Full Text: DOI
Galeani, Sergio; Possieri, Corrado; Sassano, Mario Output tracking for a class of non-minimum phase nonlinear systems: a two-point boundary value problem formulation with a hybrid regulator. (English) Zbl 07315776 Eur. J. Control 58, 43-52 (2021). MSC: 93B52 93C10 93B55 PDF BibTeX XML Cite \textit{S. Galeani} et al., Eur. J. Control 58, 43--52 (2021; Zbl 07315776) Full Text: DOI
Ishii, Hitoshi; Kumagai, Taiga Averaging of Hamilton-Jacobi equations along divergence-free vector fields. (English) Zbl 07314920 Discrete Contin. Dyn. Syst. 41, No. 4, 1519-1542 (2021). MSC: 35B25 35F21 35F30 35D40 49L25 PDF BibTeX XML Cite \textit{H. Ishii} and \textit{T. Kumagai}, Discrete Contin. Dyn. Syst. 41, No. 4, 1519--1542 (2021; Zbl 07314920) Full Text: DOI
Kajikiya, Ryuji Existence of nodal solutions for the sublinear Moore-Nehari differential equation. (English) Zbl 07314918 Discrete Contin. Dyn. Syst. 41, No. 3, 1483-1506 (2021). MSC: 34B15 34B08 34C14 PDF BibTeX XML Cite \textit{R. Kajikiya}, Discrete Contin. Dyn. Syst. 41, No. 3, 1483--1506 (2021; Zbl 07314918) Full Text: DOI
Dambrine, M.; Puig, B.; Vallet, G. A mathematical model for marine dinoflagellates blooms. (English) Zbl 07314574 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 615-633 (2021). MSC: 35K61 35Q92 92C80 PDF BibTeX XML Cite \textit{M. Dambrine} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 615--633 (2021; Zbl 07314574) Full Text: DOI
Disser, Karoline Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. (English) Zbl 07314560 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321-330 (2021). MSC: 35K61 35K57 35B45 35A01 PDF BibTeX XML Cite \textit{K. Disser}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321--330 (2021; Zbl 07314560) Full Text: DOI
Sui, Zhenan Convex hypersurfaces with prescribed scalar curvature and asymptotic boundary in hyperbolic space. (English) Zbl 07313179 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 45, 30 p. (2021). MSC: 53C42 35J66 58J32 PDF BibTeX XML Cite \textit{Z. Sui}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 45, 30 p. (2021; Zbl 07313179) Full Text: DOI
Amar, M.; de Bonis, I.; Riey, G. Corrigendum to: “Homogenization of elliptic problems involving interfaces and singular data”. (English) Zbl 07312798 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112192, 3 p. (2021). MSC: 35B27 35J65 35J75 35J25 35R05 PDF BibTeX XML Cite \textit{M. Amar} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112192, 3 p. (2021; Zbl 07312798) Full Text: DOI
Fadai, Nabil T. Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model. (English) Zbl 07312083 Nonlinearity 34, No. 2, 725-743 (2021). MSC: 35C07 35K57 34B16 41A60 PDF BibTeX XML Cite \textit{N. T. Fadai}, Nonlinearity 34, No. 2, 725--743 (2021; Zbl 07312083) Full Text: DOI
Luo, Peng; Tian, Shuying; Zhou, Xiaodong Local uniqueness and the number of concentrated solutions for nonlinear Schrödinger equations with non-admissible potential. (English) Zbl 07312082 Nonlinearity 34, No. 2, 705-724 (2021). MSC: 35B40 35B45 35J40 PDF BibTeX XML Cite \textit{P. Luo} et al., Nonlinearity 34, No. 2, 705--724 (2021; Zbl 07312082) Full Text: DOI
Bachar, Imed; Mâagli, Habib; Eltayeb, Hassan Existence and uniqueness of solutions for fractional boundary value problems under mild Lipschitz condition. (English) Zbl 07311233 J. Funct. Spaces 2021, Article ID 6666015, 6 p. (2021). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{I. Bachar} et al., J. Funct. Spaces 2021, Article ID 6666015, 6 p. (2021; Zbl 07311233) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Biswas, Anup; Lőrinczi, József Hopf’s lemma for viscosity solutions to a class of non-local equations with applications. (English) Zbl 07310962 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 204, Article ID 112194, 19 p. (2021). MSC: 35P30 35B50 35S15 PDF BibTeX XML Cite \textit{A. Biswas} and \textit{J. Lőrinczi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 204, Article ID 112194, 19 p. (2021; Zbl 07310962) Full Text: DOI
Mazari, Idriss; Ruiz-Balet, Domènec A fragmentation phenomenon for a nonenergetic optimal control problem: optimization of the total population size in logistic diffusive models. (English) Zbl 07310945 SIAM J. Appl. Math. 81, No. 1, 153-172 (2021). MSC: 35Q92 49J99 34B15 PDF BibTeX XML Cite \textit{I. Mazari} and \textit{D. Ruiz-Balet}, SIAM J. Appl. Math. 81, No. 1, 153--172 (2021; Zbl 07310945) Full Text: DOI
Khader, M. M.; Saad, Khaled M.; Hammouch, Zakia; Baleanu, Dumitru A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. (English) Zbl 07310809 Appl. Numer. Math. 161, 137-146 (2021). MSC: 76M22 76M20 76B15 65M15 26A33 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Numer. Math. 161, 137--146 (2021; Zbl 07310809) Full Text: DOI
Aggul, Mustafa; Kaya, Songül Defect-deferred correction method based on a subgrid artificial viscosity model for fluid-fluid interaction. (English) Zbl 07310769 Appl. Numer. Math. 160, 178-191 (2021). MSC: 76M10 76T06 76D27 76D05 65M12 PDF BibTeX XML Cite \textit{M. Aggul} and \textit{S. Kaya}, Appl. Numer. Math. 160, 178--191 (2021; Zbl 07310769) Full Text: DOI
Nakamura, Gen; Vashisth, Manmohan; Watanabe, Michiyuki Inverse initial boundary value problem for a non-linear hyperbolic partial differential equation. (English) Zbl 07310614 Inverse Probl. 37, No. 1, Article ID 015012, 27 p. (2021). MSC: 58J45 58J32 53C 35L PDF BibTeX XML Cite \textit{G. Nakamura} et al., Inverse Probl. 37, No. 1, Article ID 015012, 27 p. (2021; Zbl 07310614) Full Text: DOI
Sim, Inbo; Son, Byungjae Positive solutions to classes of infinite semipositone \((p,q)\)-Laplace problems with nonlinear boundary conditions. (English) Zbl 07309685 J. Math. Anal. Appl. 494, No. 1, Article ID 124577, 11 p. (2021). MSC: 34B18 47N20 PDF BibTeX XML Cite \textit{I. Sim} and \textit{B. Son}, J. Math. Anal. Appl. 494, No. 1, Article ID 124577, 11 p. (2021; Zbl 07309685) Full Text: DOI
Hu, Beibei; Zhang, Ling; Zhang, Ning On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. (English) Zbl 07309653 J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021). MSC: 35G31 35Q15 35Q55 37K15 PDF BibTeX XML Cite \textit{B. Hu} et al., J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021; Zbl 07309653) Full Text: DOI
Wang, Fei; Wu, Bangmin; Han, Weimin The virtual element method for general elliptic hemivariational inequalities. (English) Zbl 07309599 J. Comput. Appl. Math. 389, Article ID 113330, 20 p. (2021). MSC: 65N30 65N15 65J15 74M10 74M15 74S05 35Q74 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 389, Article ID 113330, 20 p. (2021; Zbl 07309599) Full Text: DOI
Benito, J. J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Solving a reaction-diffusion system with chemotaxis and non-local terms using generalized finite difference method. Study of the convergence. (English) Zbl 07309595 J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 65M06 35K55 PDF BibTeX XML Cite \textit{J. J. Benito} et al., J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021; Zbl 07309595) Full Text: DOI
Albuquerque, F. S.; Carvalho, J. L.; Figueiredo, G. M.; Medeiros, E. On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth. (English) Zbl 07309250 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 40, 30 p. (2021). MSC: 35J15 35J25 35J60 PDF BibTeX XML Cite \textit{F. S. Albuquerque} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 40, 30 p. (2021; Zbl 07309250) Full Text: DOI
Jiang, Tangyu; Li, Haigang; Li, Xiaoliang On the exterior Dirichlet problem for a class of fully nonlinear elliptic equations. (English) Zbl 07309161 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 17, 20 p. (2021). MSC: 35J60 35J25 35D40 35B40 PDF BibTeX XML Cite \textit{T. Jiang} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 17, 20 p. (2021; Zbl 07309161) Full Text: DOI
Kuusi, Tuomo; Misawa, Masashi; Nakamura, Kenta Global existence for the \(p\)-Sobolev flow. (English) Zbl 07308688 J. Differ. Equations 279, 245-281 (2021). MSC: 35B45 35B65 35D30 35K61 35K60 35J65 35D05 35D10 35R35 PDF BibTeX XML Cite \textit{T. Kuusi} et al., J. Differ. Equations 279, 245--281 (2021; Zbl 07308688) Full Text: DOI
Hung, Kuo-Chih Bifurcation curves of a Dirichlet problem with geometrically concave nonlinearity and an application to the generalized logistic growth model. (English) Zbl 07308533 Proc. Am. Math. Soc. 149, No. 3, 1117-1126 (2021). Reviewer: Yanqiong Lu (Lanzhou) MSC: 34B09 34B18 34C23 PDF BibTeX XML Cite \textit{K.-C. Hung}, Proc. Am. Math. Soc. 149, No. 3, 1117--1126 (2021; Zbl 07308533) Full Text: DOI
Chuiko, Sergii Mykhailovych; Nesmelova, Ol’ga Volodymyrivna Nonlinear boundary-value problems for degenerate differential-algebraic systems. (English. Ukrainian original) Zbl 07308110 J. Math. Sci., New York 252, No. 4, 463-471 (2021); translation from Ukr. Mat. Visn. 17, No. 3, 313-324 (2020). MSC: 34A09 34A45 PDF BibTeX XML Cite \textit{S. M. Chuiko} and \textit{O. V. Nesmelova}, J. Math. Sci., New York 252, No. 4, 463--471 (2021; Zbl 07308110); translation from Ukr. Mat. Visn. 17, No. 3, 313--324 (2020) Full Text: DOI
Hu, Rentian; Edwards, Thomas K.; Smith, Leslie M.; Stechmann, Samuel N. Initial investigations of precipitating quasi-geostrophic turbulence with phase changes. (English) Zbl 07307667 Res. Math. Sci. 8, No. 1, Paper No. 6, 25 p. (2021). MSC: 65M70 65N35 65L06 35M10 35J60 86A05 86A10 76T10 76F65 86-08 35Q86 PDF BibTeX XML Cite \textit{R. Hu} et al., Res. Math. Sci. 8, No. 1, Paper No. 6, 25 p. (2021; Zbl 07307667) Full Text: DOI
Wen, Zhenshu; Zhang, Lijun; Zhang, Mingji Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers. (English) Zbl 07307362 J. Dyn. Differ. Equations 33, No. 1, 211-234 (2021). MSC: 34E15 34B15 92C35 PDF BibTeX XML Cite \textit{Z. Wen} et al., J. Dyn. Differ. Equations 33, No. 1, 211--234 (2021; Zbl 07307362) Full Text: DOI
Liu, Qun; Chen, Qingmei A note on the stationary distribution of a three-species food web stochastic model with generalist predator. (English) Zbl 07307183 Appl. Math. Lett. 114, Article ID 106929, 7 p. (2021). MSC: 92D40 92D25 34B18 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{Q. Chen}, Appl. Math. Lett. 114, Article ID 106929, 7 p. (2021; Zbl 07307183) Full Text: DOI
Calanchi, Marta; Tomei, Carlos Positive eigenvectors and simple nonlinear maps. (English) Zbl 07306986 J. Funct. Anal. 280, No. 7, Article ID 108823, 36 p. (2021). MSC: 35J65 47H11 47H30 58K05 PDF BibTeX XML Cite \textit{M. Calanchi} and \textit{C. Tomei}, J. Funct. Anal. 280, No. 7, Article ID 108823, 36 p. (2021; Zbl 07306986) Full Text: DOI
Shankar, Ravi Recovering a quasilinear conductivity from boundary measurements. (English) Zbl 07305939 Inverse Probl. 37, No. 1, Article ID 015014, 24 p. (2021). MSC: 65N21 35D30 35A02 35R30 PDF BibTeX XML Cite \textit{R. Shankar}, Inverse Probl. 37, No. 1, Article ID 015014, 24 p. (2021; Zbl 07305939) Full Text: DOI
Le, Vy Khoi Extremal solutions in systems of variational inequalities with multivalued mappings. (English) Zbl 07305509 Appl. Anal. 100, No. 3, 561-573 (2021). MSC: 35J87 35B45 35J65 35J60 PDF BibTeX XML Cite \textit{V. K. Le}, Appl. Anal. 100, No. 3, 561--573 (2021; Zbl 07305509) Full Text: DOI
Mabdaoui, M.; Essafi, L.; Rhoudaf, M. Rothe’s method for a nonlinear parabolic problem in Musielak-Orlicz spaces. (English) Zbl 07305254 Appl. Anal. 100, No. 2, 428-463 (2021). MSC: 35K59 35K20 35J60 35A01 35A02 46E30 PDF BibTeX XML Cite \textit{M. Mabdaoui} et al., Appl. Anal. 100, No. 2, 428--463 (2021; Zbl 07305254) Full Text: DOI
Azroul, E.; Benkirane, A.; Shimi, M.; Srati, M. On a class of fractional \(p(x)\)-Kirchhoff type problems. (English) Zbl 07305251 Appl. Anal. 100, No. 2, 383-402 (2021). MSC: 35R11 35D30 35J92 35J25 35R09 35P30 35S15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Appl. Anal. 100, No. 2, 383--402 (2021; Zbl 07305251) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Bayada, G.; El Alaoui Talibi, M.; Hilal, M. Existence and uniqueness results for compressible Reynolds equation with slip boundary conditions. (English) Zbl 07305247 Appl. Anal. 100, No. 2, 302-321 (2021). MSC: 34B15 PDF BibTeX XML Cite \textit{G. Bayada} et al., Appl. Anal. 100, No. 2, 302--321 (2021; Zbl 07305247) Full Text: DOI
Jiang, Chaolong; Wang, Yushun; Gong, Yuezheng Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations. (English) Zbl 07305223 J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021). MSC: 65M22 65L06 65M70 65N35 35Q55 35Q41 PDF BibTeX XML Cite \textit{C. Jiang} et al., J. Comput. Appl. Math. 388, Article ID 113298, 17 p. (2021; Zbl 07305223) Full Text: DOI
Erbay, Husnuata A.; Erbay, Saadet; Erkip, Albert A semi-discrete numerical method for convolution-type unidirectional wave equations. (English) Zbl 07305179 J. Comput. Appl. Math. 387, Article ID 112496, 14 p. (2021). MSC: 35Q53 35C08 65M12 65M15 65L06 65M20 65Z05 PDF BibTeX XML Cite \textit{H. A. Erbay} et al., J. Comput. Appl. Math. 387, Article ID 112496, 14 p. (2021; Zbl 07305179) Full Text: DOI
Xu, Qiuyan; An, Hengbin A class of domain decomposition based nonlinear explicit-implicit iteration algorithms for solving diffusion equations with discontinuous coefficient. (English) Zbl 07305149 J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021). MSC: 65M55 65M06 35K55 85A25 80A21 85-08 35Q85 PDF BibTeX XML Cite \textit{Q. Xu} and \textit{H. An}, J. Comput. Appl. Math. 386, Article ID 113232, 24 p. (2021; Zbl 07305149) Full Text: DOI
Tao, Qi; Xu, Yan; Shu, Chi-Wang A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. (English) Zbl 07305147 J. Comput. Appl. Math. 386, Article ID 113230, 17 p. (2021). MSC: 65M60 65M06 65N30 65M15 74K10 74K20 74H45 35Q74 PDF BibTeX XML Cite \textit{Q. Tao} et al., J. Comput. Appl. Math. 386, Article ID 113230, 17 p. (2021; Zbl 07305147) Full Text: DOI
Hou, Baohui; Liang, Dong Time fourth-order energy-preserving AVF finite difference method for nonlinear space-fractional wave equations. (English) Zbl 07305144 J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021). MSC: 65M06 35R11 37K05 65M12 PDF BibTeX XML Cite \textit{B. Hou} and \textit{D. Liang}, J. Comput. Appl. Math. 386, Article ID 113227, 26 p. (2021; Zbl 07305144) Full Text: DOI
Gu, Ruixue; Han, Bo; Tong, Shanshan; Chen, Yong An accelerated Kaczmarz type method for nonlinear inverse problems in Banach spaces with uniformly convex penalty. (English) Zbl 07305130 J. Comput. Appl. Math. 385, Article ID 113211, 22 p. (2021). MSC: 65N21 65N20 65N30 65K10 65H10 65H20 PDF BibTeX XML Cite \textit{R. Gu} et al., J. Comput. Appl. Math. 385, Article ID 113211, 22 p. (2021; Zbl 07305130) Full Text: DOI
Long, Haie; Han, Bo; Li, Li A fast two-point gradient method for solving non-smooth nonlinear ill-posed problems. (English) Zbl 07305051 J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021). MSC: 65N21 65N20 65K10 65N12 65B99 65J20 35J61 PDF BibTeX XML Cite \textit{H. Long} et al., J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021; Zbl 07305051) Full Text: DOI
Kang, Hao; Ruan, Shigui Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions. (English) Zbl 07303714 J. Differ. Equations 278, 430-462 (2021). MSC: 35F31 35R09 92D25 35P20 45K05 45A05 45G10 47D06 PDF BibTeX XML Cite \textit{H. Kang} and \textit{S. Ruan}, J. Differ. Equations 278, 430--462 (2021; Zbl 07303714) Full Text: DOI
Aleja, D.; Molina-Meyer, M. Nonlinear finite elements: sub- and supersolutions for the heterogeneous logistic equation. (English) Zbl 07303708 J. Differ. Equations 278, 189-219 (2021). MSC: 65L60 65L10 35J25 35B50 PDF BibTeX XML Cite \textit{D. Aleja} and \textit{M. Molina-Meyer}, J. Differ. Equations 278, 189--219 (2021; Zbl 07303708) Full Text: DOI
Keeler, Jack S.; Blyth, M. G.; King, John R. Termination points and homoclinic glueing for a class of inhomogeneous nonlinear ordinary differential equations. (English) Zbl 07303409 Nonlinearity 34, No. 1, 532-561 (2021). MSC: 34B09 34B40 34C37 34C23 PDF BibTeX XML Cite \textit{J. S. Keeler} et al., Nonlinearity 34, No. 1, 532--561 (2021; Zbl 07303409) Full Text: DOI
Akrivis, Georgios; Li, Buyang; Wang, Jilu Convergence of a second-order energy-decaying method for the viscous rotating shallow water equation. (English) Zbl 07302955 SIAM J. Numer. Anal. 59, No. 1, 265-288 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N30 65M12 65M15 65H10 35L60 76U05 35Q35 PDF BibTeX XML Cite \textit{G. Akrivis} et al., SIAM J. Numer. Anal. 59, No. 1, 265--288 (2021; Zbl 07302955) Full Text: DOI
Metzger, Stefan An efficient and convergent finite element scheme for Cahn-Hilliard equations with dynamic boundary conditions. (English) Zbl 07302953 SIAM J. Numer. Anal. 59, No. 1, 219-248 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 76T06 35G31 65M60 65M12 PDF BibTeX XML Cite \textit{S. Metzger}, SIAM J. Numer. Anal. 59, No. 1, 219--248 (2021; Zbl 07302953) Full Text: DOI
Bahrouni, Sabri; Ounaies, Hichem Strauss and Lions type theorems for the fractional Sobolev spaces with variable exponent and applications to nonlocal Kirchhoff-Choquard problem. (English) Zbl 07302846 Mediterr. J. Math. 18, No. 2, Paper No. 46, 22 p. (2021). MSC: 35J60 35S11 35J91 35S30 46E35 58E30 PDF BibTeX XML Cite \textit{S. Bahrouni} and \textit{H. Ounaies}, Mediterr. J. Math. 18, No. 2, Paper No. 46, 22 p. (2021; Zbl 07302846) Full Text: DOI
Caballero, Josefa; Harjani, J.; Sadarangani, K. Existence and uniqueness of positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. (English) Zbl 07302474 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021). MSC: 34A08 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{J. Caballero} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021; Zbl 07302474) Full Text: DOI
Abreu, E.; Matos, V.; Pérez, J.; Rodríguez-Bermúdez, P. A class of Lagrangian-Eulerian shock-capturing schemes for first-order hyperbolic problems with forcing terms. (English) Zbl 07301292 J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021). MSC: 65M06 65M12 35L65 35L45 76S05 76T06 76N10 76L05 76B15 PDF BibTeX XML Cite \textit{E. Abreu} et al., J. Sci. Comput. 86, No. 1, Paper No. 14, 47 p. (2021; Zbl 07301292) Full Text: DOI
Bernier, Joackim; Crouseilles, Nicolas; Li, Yingzhe Exact splitting methods for kinetic and Schrödinger equations. (English) Zbl 07301288 J. Sci. Comput. 86, No. 1, Paper No. 10, 35 p. (2021). MSC: 35Q55 35Q49 35Q84 82C40 65M70 65M22 PDF BibTeX XML Cite \textit{J. Bernier} et al., J. Sci. Comput. 86, No. 1, Paper No. 10, 35 p. (2021; Zbl 07301288) Full Text: DOI
Cuesta, Mabel; Leadi, Liamidi Positive and sign-changing solutions for a quasilinear Steklov nonlinear boundary problem with critical growth. (English) Zbl 07301271 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 3, 29 p. (2021). MSC: 35B09 35D30 35J66 35J92 35J70 35J25 35J20 PDF BibTeX XML Cite \textit{M. Cuesta} and \textit{L. Leadi}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 3, 29 p. (2021; Zbl 07301271) Full Text: DOI
Zhang, Guoliang; Zheng, Shaoqin; Xiong, Tao A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. (English) Zbl 07300784 Electron Res. Arch. 29, No. 1, 1819-1839 (2021). MSC: 65M06 65M25 65L06 PDF BibTeX XML Cite \textit{G. Zhang} et al., Electron Res. Arch. 29, No. 1, 1819--1839 (2021; Zbl 07300784) Full Text: DOI
Chen, Rong; Pan, Shihang; Zhang, Baoshuai Global conservative solutions for a modified periodic coupled Camassa-Holm system. (English) Zbl 07300778 Electron Res. Arch. 29, No. 1, 1691-1708 (2021). MSC: 35B60 35A01 35A02 35D30 35G25 35G25 PDF BibTeX XML Cite \textit{R. Chen} et al., Electron Res. Arch. 29, No. 1, 1691--1708 (2021; Zbl 07300778) Full Text: DOI
Abreu, Emerson; Felix, Diego Dias; Medeiros, Everaldo A weighted Hardy type inequality and its applications. (English) Zbl 07300228 Bull. Sci. Math. 166, Article ID 102937, 26 p. (2021). MSC: 46E35 35J66 35J65 35A01 35B09 35K05 35C06 PDF BibTeX XML Cite \textit{E. Abreu} et al., Bull. Sci. Math. 166, Article ID 102937, 26 p. (2021; Zbl 07300228) Full Text: DOI
Wang, Hui; Zhang, Lingling Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions. (English) Zbl 07300226 Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021). Reviewer: Syed Abbas (Mandi) MSC: 34 26A33 34A34 34B10 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Zhang}, Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021; Zbl 07300226) Full Text: DOI
Zhong, Liuqiang; Zhou, Liangliang; Liu, Chunmei; Peng, Jie Two-grid IPDG discretization scheme for nonlinear elliptic PDEs. (English) Zbl 1452.65364 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105587, 21 p. (2021). MSC: 65N30 35J60 65M12 65N55 PDF BibTeX XML Cite \textit{L. Zhong} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105587, 21 p. (2021; Zbl 1452.65364) Full Text: DOI
Suzuki, Masahiro; Takayama, Masahiro Stability and existence of stationary solutions to the Euler-Poisson equations in a domain with a curved boundary. (English) Zbl 07298827 Arch. Ration. Mech. Anal. 239, No. 1, 357-387 (2021). MSC: 82D10 76X05 35B40 35A01 35J65 35B35 PDF BibTeX XML Cite \textit{M. Suzuki} and \textit{M. Takayama}, Arch. Ration. Mech. Anal. 239, No. 1, 357--387 (2021; Zbl 07298827) Full Text: DOI
Macías-Díaz, Jorge E. A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation. (English) Zbl 07298616 Numer. Algorithms 86, No. 1, 75-102 (2021). MSC: 65M06 65M12 74K05 74H45 74B20 35R11 35Q74 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Numer. Algorithms 86, No. 1, 75--102 (2021; Zbl 07298616) Full Text: DOI
Lindgren, Erik; Lindqvist, Peter The gradient flow of infinity-harmonic potentials. (English) Zbl 07298477 Adv. Math. 378, Article ID 107526, 25 p. (2021). MSC: 35J60 35J65 35J70 49N60 31 35J15 PDF BibTeX XML Cite \textit{E. Lindgren} and \textit{P. Lindqvist}, Adv. Math. 378, Article ID 107526, 25 p. (2021; Zbl 07298477) Full Text: DOI
Hu, Jingwei; Shu, Ruiwen On the uniform accuracy of implicit-explicit backward differentiation formulas (IMEX-BDF) for stiff hyperbolic relaxation systems and kinetic equations. (English) Zbl 07298451 Math. Comput. 90, No. 328, 641-670 (2021). MSC: 65M06 65M70 65M60 65M12 65L04 65L06 35L03 35L60 82C40 PDF BibTeX XML Cite \textit{J. Hu} and \textit{R. Shu}, Math. Comput. 90, No. 328, 641--670 (2021; Zbl 07298451) Full Text: DOI
Hallaci, Ahmed; Boulares, Hamid; Ardjouni, Abdelouaheb; Chaoui, Abderrazak New existence results for fractional differential equations in a weighted Sobolev space. (English) Zbl 07297939 Rend. Mat. Appl., VII. Ser. 42, No. 1, 35-48 (2021). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{A. Hallaci} et al., Rend. Mat. Appl., VII. Ser. 42, No. 1, 35--48 (2021; Zbl 07297939) Full Text: Link
Samoilenko, A. M.; Chuiko, S. M.; Nesmelova, O. V. Nonlinear boundary-value problems unsolved with respect to the derivative. (English. Ukrainian original) Zbl 07297498 Ukr. Math. J. 72, No. 8, 1280-1293 (2021); translation from Ukr. Mat. Zh. 72, No. 8, 1106-1118 (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34B15 34B10 34A45 PDF BibTeX XML Cite \textit{A. M. Samoilenko} et al., Ukr. Math. J. 72, No. 8, 1280--1293 (2021; Zbl 07297498); translation from Ukr. Mat. Zh. 72, No. 8, 1106--1118 (2020) Full Text: DOI
Vanterler da C. Sousa, J.; Jarad, Fahd; Abdeljawad, Thabet Existence of mild solutions to hilfer fractional evolution equations in Banach space. (English) Zbl 07296612 Ann. Funct. Anal. 12, No. 1, Paper No. 12, 16 p. (2021). MSC: 34A08 34G20 34A37 34B10 47N20 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Ann. Funct. Anal. 12, No. 1, Paper No. 12, 16 p. (2021; Zbl 07296612) Full Text: DOI
Harvey, F. Reese; Lawson, H. Blaine jun. Pseudoconvexity for the special Lagrangian potential equation. (English) Zbl 07296598 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 6, 37 p. (2021). MSC: 35G30 53C38 14J33 PDF BibTeX XML Cite \textit{F. R. Harvey} and \textit{H. B. Lawson jun.}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 6, 37 p. (2021; Zbl 07296598) Full Text: DOI
Apushkinskaya, Darya E.; Nazarov, Alexander I.; Palagachev, Dian K.; Softova, Lubomira G. Venttsel boundary value problems with discontinuous data. (English) Zbl 07293731 SIAM J. Math. Anal. 53, No. 1, 221-252 (2021). Reviewer: Zhipeng Yang (Göttingen) MSC: 35J25 35R05 35B45 35J66 60J60 91G80 PDF BibTeX XML Cite \textit{D. E. Apushkinskaya} et al., SIAM J. Math. Anal. 53, No. 1, 221--252 (2021; Zbl 07293731) Full Text: DOI
Lambers, James V.; Mooney, Amber Sumner; Montiforte, Vivian A. Explorations in numerical analysis. Python edition. (English) Zbl 07291801 Hackensack, NJ: World Scientific (ISBN 978-981-12-2793-6/hbk; 978-981-12-2934-3/pbk; 978-981-12-2795-0/ebook). xv, 674 p. (2021). MSC: 65-01 65Fxx 65Dxx 65Hxx 65Lxx 65Mxx 65Nxx PDF BibTeX XML Cite \textit{J. V. Lambers} et al., Explorations in numerical analysis. Python edition. Hackensack, NJ: World Scientific (2021; Zbl 07291801) Full Text: DOI
Castelli, M.; Doronin, G. Modified and subcritical Zakharov-Kuznetsov equations posed on rectangles. (English) Zbl 07291349 J. Differ. Equations 275, 554-580 (2021). MSC: 35G31 35Q53 PDF BibTeX XML Cite \textit{M. Castelli} and \textit{G. Doronin}, J. Differ. Equations 275, 554--580 (2021; Zbl 07291349) Full Text: DOI
Wang, Fang; Xue, Ling; Zhao, Kun; Zheng, Xiaoming Global stabilization and boundary control of generalized Fisher/KPP equation and application to diffusive SIS model. (English) Zbl 07291343 J. Differ. Equations 275, 391-417 (2021). MSC: 35K57 35G31 35A09 35B35 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Differ. Equations 275, 391--417 (2021; Zbl 07291343) Full Text: DOI
Jagtap, Ameya D. On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme. (English) Zbl 07291032 Appl. Anal. 100, No. 1, 37-60 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M70 35C08 65M12 58J45 35L70 35L20 35Q51 PDF BibTeX XML Cite \textit{A. D. Jagtap}, Appl. Anal. 100, No. 1, 37--60 (2021; Zbl 07291032) Full Text: DOI
del Mar González, María; Lee, Ki-Ahm; Lee, Taehun Optimal configuration and symmetry breaking phenomena in the composite membrane problem with fractional Laplacian. (English) Zbl 07289127 J. Differ. Equations 274, 1165-1208 (2021). MSC: 35R11 35P05 35J25 35J87 35R35 49R05 PDF BibTeX XML Cite \textit{M. del Mar González} et al., J. Differ. Equations 274, 1165--1208 (2021; Zbl 07289127) Full Text: DOI
Figueiredo, Giovany M.; Madeira, Gustavo F. Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient. (English) Zbl 07289118 J. Differ. Equations 274, 857-875 (2021). MSC: 35J60 35B09 35J25 35J75 PDF BibTeX XML Cite \textit{G. M. Figueiredo} and \textit{G. F. Madeira}, J. Differ. Equations 274, 857--875 (2021; Zbl 07289118) Full Text: DOI
Morrison, George; Taheri, Ali The interplay between two Euler-Lagrange operators relating to the nonlinear elliptic system \(\Sigma [(u, {\mathscr{P}}), \varOmega]\). (English) Zbl 07286957 Adv. Oper. Theory 6, No. 1, Paper No. 17, 28 p. (2021). MSC: 35J57 35J62 47F10 53C22 58J70 58D19 35J50 22E30 PDF BibTeX XML Cite \textit{G. Morrison} and \textit{A. Taheri}, Adv. Oper. Theory 6, No. 1, Paper No. 17, 28 p. (2021; Zbl 07286957) Full Text: DOI
de Sousa, Robert; Minhós, Feliz Existence and location of solutions to fourth-order Lidstone coupled systems with dependence on odd derivatives. (English) Zbl 07286950 Adv. Oper. Theory 6, No. 1, Paper No. 10, 17 p. (2021). Reviewer: Smail Djebali (Algiers) MSC: 34B15 47N20 PDF BibTeX XML Cite \textit{R. de Sousa} and \textit{F. Minhós}, Adv. Oper. Theory 6, No. 1, Paper No. 10, 17 p. (2021; Zbl 07286950) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. II: \( \theta < \log 2\). (English) Zbl 07285709 J. Differ. Equations 272, 1015-1049 (2021). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, J. Differ. Equations 272, 1015--1049 (2021; Zbl 07285709) Full Text: DOI
Liu, Qing; Shanmugalingam, Nageswari; Zhou, Xiaodan Equivalence of solutions of eikonal equation in metric spaces. (English) Zbl 07285708 J. Differ. Equations 272, 979-1014 (2021). MSC: 35F30 35R15 49L25 35F21 35D40 PDF BibTeX XML Cite \textit{Q. Liu} et al., J. Differ. Equations 272, 979--1014 (2021; Zbl 07285708) Full Text: DOI
Li, Zhouxin; Liu, Ruishu Existence and concentration behavior of solutions to 1-Laplace equations on \(\mathbb{R}^N\). (English) Zbl 07285694 J. Differ. Equations 272, 399-432 (2021). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 58E05 35J65 PDF BibTeX XML Cite \textit{Z. Li} and \textit{R. Liu}, J. Differ. Equations 272, 399--432 (2021; Zbl 07285694) Full Text: DOI
Pozza, Marco Representation formula for viscosity solution to a PDE problem involving Pucci’s extremal operator. (English) Zbl 07284896 Nonlinear Anal., Real World Appl. 57, Article ID 103199, 13 p. (2021). MSC: 35D40 35C15 35J25 PDF BibTeX XML Cite \textit{M. Pozza}, Nonlinear Anal., Real World Appl. 57, Article ID 103199, 13 p. (2021; Zbl 07284896) Full Text: DOI
Garcke, Harald; Lam, Kei Fong; Signori, Andrea On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects. (English) Zbl 07284889 Nonlinear Anal., Real World Appl. 57, Article ID 103192, 28 p. (2021). Reviewer: Joseph Shomberg (Providence) MSC: 35G61 49J20 35Q92 PDF BibTeX XML Cite \textit{H. Garcke} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103192, 28 p. (2021; Zbl 07284889) Full Text: DOI
Mugnai, Dimitri; Proietti Lippi, Edoardo Linking over cones for the Neumann fractional \(p\)-Laplacian. (English) Zbl 07283599 J. Differ. Equations 271, 797-820 (2021). MSC: 35R11 35J92 35J25 35A15 47J30 35S15 47G10 45G05 35P30 PDF BibTeX XML Cite \textit{D. Mugnai} and \textit{E. Proietti Lippi}, J. Differ. Equations 271, 797--820 (2021; Zbl 07283599) Full Text: DOI
Dai, Qiuyi Iterative method for Kirchhoff-Carrier type equations and its applications. (English) Zbl 07283585 J. Differ. Equations 271, 332-342 (2021). MSC: 35J25 35J60 35A01 PDF BibTeX XML Cite \textit{Q. Dai}, J. Differ. Equations 271, 332--342 (2021; Zbl 07283585) Full Text: DOI
Khachay, O. Yu. Asymptotic problem for second-order ordinary differential equation with nonlinearity corresponding to a butterfly catastrophe. (English. Russian original) Zbl 07283017 J. Math. Sci., New York 252, No. 2, 247-265 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 125-142 (2018). Reviewer: Bertin Zinsou (Johannesburg) MSC: 34E05 34A34 34B40 34A12 34B08 PDF BibTeX XML Cite \textit{O. Yu. Khachay}, J. Math. Sci., New York 252, No. 2, 247--265 (2021; Zbl 07283017); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 125--142 (2018) Full Text: DOI
Vildanova, V. F.; Mukminov, F. Kh. Existence of weak solutions of the aggregation equation with the \(p ( \cdot )\)-Laplacian. (English. Russian original) Zbl 1453.35109 J. Math. Sci., New York 252, No. 2, 156-167 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34-45 (2018). MSC: 35K20 35K92 35K65 35K61 35D30 35R09 PDF BibTeX XML Cite \textit{V. F. Vildanova} and \textit{F. Kh. Mukminov}, J. Math. Sci., New York 252, No. 2, 156--167 (2021; Zbl 1453.35109); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34--45 (2018) Full Text: DOI
Cui, Jin; Xu, Zhuangzhi; Wang, Yushun; Jiang, Chaolong Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation. (English) Zbl 07281310 Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65L06 65P10 35A22 35Q55 PDF BibTeX XML Cite \textit{J. Cui} et al., Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021; Zbl 07281310) Full Text: DOI
Li, Xiaolin; Dong, Haiyun An element-free Galerkin method for the obstacle problem. (English) Zbl 07281298 Appl. Math. Lett. 112, Article ID 106724, 7 p. (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Dong}, Appl. Math. Lett. 112, Article ID 106724, 7 p. (2021; Zbl 07281298) Full Text: DOI
Tenore, Alberto; Mattei, Maria Rosaria; Frunzo, Luigi Modelling the ecology of phototrophic-heterotrophic biofilms. (English) Zbl 07280114 Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105577, 21 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92D40 92E20 78A40 76V05 35K55 35L60 35R35 PDF BibTeX XML Cite \textit{A. Tenore} et al., Commun. Nonlinear Sci. Numer. Simul. 94, Article ID 105577, 21 p. (2021; Zbl 07280114) Full Text: DOI
Zeng, Shengda; Migórski, Stanisław; Liu, Zhenhai; Yao, Jen-Chih Convergence of a generalized penalty method for variational-hemivariational inequalities. (English) Zbl 07274884 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105476, 19 p. (2021). MSC: 47J20 49J53 58E35 35J66 46Txx PDF BibTeX XML Cite \textit{S. Zeng} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105476, 19 p. (2021; Zbl 07274884) Full Text: DOI
Bayındır, Cihan; Altintas, Azmi Ali; Ozaydin, Fatih Self-localized solitons of a \(q\)-deformed quantum system. (English) Zbl 1453.35160 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021). MSC: 35Q55 35Q41 35C08 35B35 35B44 65N35 65L06 60H40 81Q05 PDF BibTeX XML Cite \textit{C. Bayındır} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021; Zbl 1453.35160) Full Text: DOI
Li, Chan; Liang, Jin; Xiao, Ti-Jun Long-term dynamical behavior of the wave model with locally distributed frictional and viscoelastic damping. (English) Zbl 1452.35104 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105472, 22 p. (2021). MSC: 35L71 35B40 35L20 35R09 PDF BibTeX XML Cite \textit{C. Li} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105472, 22 p. (2021; Zbl 1452.35104) Full Text: DOI
Zolotarev, V. A. Direct and inverse problems for a periodic problem with non-local potential. (English) Zbl 07269169 J. Differ. Equations 270, 1-23 (2021). MSC: 34A55 34B15 PDF BibTeX XML Cite \textit{V. A. Zolotarev}, J. Differ. Equations 270, 1--23 (2021; Zbl 07269169) Full Text: DOI
Schratz, Katharina; Wang, Yan; Zhao, Xiaofei Low-regularity integrators for nonlinear Dirac equations. (English) Zbl 1450.35231 Math. Comput. 90, No. 327, 189-214 (2021). MSC: 35Q41 65M70 65N35 65M12 65M15 65M06 35B65 35S30 PDF BibTeX XML Cite \textit{K. Schratz} et al., Math. Comput. 90, No. 327, 189--214 (2021; Zbl 1450.35231) Full Text: DOI
Sun, Weiwei; Wu, Chengda New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media. (English) Zbl 1452.65359 Math. Comput. 90, No. 327, 81-102 (2021). MSC: 65N30 65M22 65N12 65M15 65H10 35K61 76S05 35Q35 PDF BibTeX XML Cite \textit{W. Sun} and \textit{C. Wu}, Math. Comput. 90, No. 327, 81--102 (2021; Zbl 1452.65359) Full Text: DOI
Furtado, Marcelo Fernandes; de Sousa, Karla Carolina Vicente Multiplicity of solutions for a nonlinear boundary value problem in the upper half-space. (English) Zbl 07267869 J. Math. Anal. Appl. 493, No. 2, Article ID 124544, 21 p. (2021). MSC: 35J61 35J25 35A01 PDF BibTeX XML Cite \textit{M. F. Furtado} and \textit{K. C. V. de Sousa}, J. Math. Anal. Appl. 493, No. 2, Article ID 124544, 21 p. (2021; Zbl 07267869) Full Text: DOI
Lyubanova, Anna Sh. Nonlinear boundary value problem for pseudoparabolic equation. (English) Zbl 1451.35076 J. Math. Anal. Appl. 493, No. 2, Article ID 124514, 18 p. (2021). MSC: 35K70 35K20 35K60 35B65 PDF BibTeX XML Cite \textit{A. Sh. Lyubanova}, J. Math. Anal. Appl. 493, No. 2, Article ID 124514, 18 p. (2021; Zbl 1451.35076) Full Text: DOI
Bertacco, Federico Stochastic Allen-Cahn equation with logarithmic potential. (English) Zbl 1450.35306 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112122, 22 p. (2021). MSC: 35R60 35K20 35K55 60H15 PDF BibTeX XML Cite \textit{F. Bertacco}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112122, 22 p. (2021; Zbl 1450.35306) Full Text: DOI
Beroš, Ivo; Hlupić, Nikica; Basch, Danko Modification of the finite-difference method for solving a special class of nonlinear two-point boundary value problems. (English) Zbl 1450.65070 Int. J. Math. Comput. Sci. 16, No. 1, 487-502 (2021). MSC: 65L10 65L12 65H10 PDF BibTeX XML Cite \textit{I. Beroš} et al., Int. J. Math. Comput. Sci. 16, No. 1, 487--502 (2021; Zbl 1450.65070) Full Text: Link
Lao, Xiaoqing; Pan, Hongjing; Xing, Ruixiang Global bifurcation curves of a regularized MEMS model. (English) Zbl 07258423 Appl. Math. Lett. 111, Article ID 106688, 7 p. (2021). Reviewer: Yanqiong Lu (Lanzhou) MSC: 34B09 34B08 34C23 34B18 PDF BibTeX XML Cite \textit{X. Lao} et al., Appl. Math. Lett. 111, Article ID 106688, 7 p. (2021; Zbl 07258423) Full Text: DOI
Li, Xiaoxi; Wen, Jinming; Li, Dongfang Mass- and energy-conserving difference schemes for nonlinear fractional Schrödinger equations. (English) Zbl 1450.65081 Appl. Math. Lett. 111, Article ID 106686, 7 p. (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Math. Lett. 111, Article ID 106686, 7 p. (2021; Zbl 1450.65081) Full Text: DOI
Xing, F. New optimized Schwarz algorithms for one dimensional Schrödinger equation with general potential. (English) Zbl 07246880 J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021). MSC: 65N55 65M55 65M06 65F05 65F08 65F10 65Y05 35Q55 PDF BibTeX XML Cite \textit{F. Xing}, J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021; Zbl 07246880) Full Text: DOI