Frid, Hermano; Marroquin, Daniel; Nariyoshi, João F. C. Global smooth solutions with large data for a system modeling aurora type phenomena in the 2-torus. (English) Zbl 07317441 SIAM J. Math. Anal. 53, No. 1, 1122-1167 (2021). MSC: 35Q35 76A02 76N10 PDF BibTeX XML Cite \textit{H. Frid} et al., SIAM J. Math. Anal. 53, No. 1, 1122--1167 (2021; Zbl 07317441) Full Text: DOI
Liu, Xiaonan; Ma, Shiwang; Xia, Jiankang Multiple bound states of higher topological type for semi-classical Choquard equations. (English) Zbl 07316402 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329-355 (2021). MSC: 35J61 35B25 35B40 35Q55 PDF BibTeX XML Cite \textit{X. Liu} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329--355 (2021; Zbl 07316402) Full Text: DOI
Besse, Christophe; Descombes, Stéphane; Dujardin, Guillaume; Lacroix-Violet, Ingrid Energy-preserving methods for nonlinear Schrödinger equations. (English) Zbl 07315161 IMA J. Numer. Anal. 41, No. 1, 618-653 (2021). MSC: 65 PDF BibTeX XML Cite \textit{C. Besse} et al., IMA J. Numer. Anal. 41, No. 1, 618--653 (2021; Zbl 07315161) Full Text: DOI
Comech, Andrew; Cuccagna, Scipio On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. (English) Zbl 07314908 Discrete Contin. Dyn. Syst. 41, No. 3, 1225-1270 (2021). MSC: 35Q55 35B35 35B40 35C08 35Q41 37K40 PDF BibTeX XML Cite \textit{A. Comech} and \textit{S. Cuccagna}, Discrete Contin. Dyn. Syst. 41, No. 3, 1225--1270 (2021; Zbl 07314908) Full Text: DOI
Landoulsi, Oussama Construction of a solitary wave solution of the nonlinear focusing Schrödinger equation outside a strictly convex obstacle in the \(L^2\)-supercritical case. (English) Zbl 07314362 Discrete Contin. Dyn. Syst. 41, No. 2, 701-746 (2021). MSC: 35Q55 35C08 35B40 PDF BibTeX XML Cite \textit{O. Landoulsi}, Discrete Contin. Dyn. Syst. 41, No. 2, 701--746 (2021; Zbl 07314362) Full Text: DOI
Gerdjikov, Vladimir S.; Ivanov, Rossen I. Multicomponent Fokas-Lenells equations on Hermitian symmetric spaces. (English) Zbl 07312090 Nonlinearity 34, No. 2, 939-963 (2021). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{V. S. Gerdjikov} and \textit{R. I. Ivanov}, Nonlinearity 34, No. 2, 939--963 (2021; Zbl 07312090) Full Text: DOI
Dinh, Van Duong Dynamics of radial solutions for the focusing fourth-order nonlinear Schrödinger equations. (English) Zbl 07312085 Nonlinearity 34, No. 2, 776-821 (2021). MSC: 35Q55 35Q41 35B44 35P25 PDF BibTeX XML Cite \textit{V. D. Dinh}, Nonlinearity 34, No. 2, 776--821 (2021; Zbl 07312085) Full Text: DOI
Luo, Peng; Tian, Shuying; Zhou, Xiaodong Local uniqueness and the number of concentrated solutions for nonlinear Schrödinger equations with non-admissible potential. (English) Zbl 07312082 Nonlinearity 34, No. 2, 705-724 (2021). MSC: 35J61 35B40 35B45 35J40 PDF BibTeX XML Cite \textit{P. Luo} et al., Nonlinearity 34, No. 2, 705--724 (2021; Zbl 07312082) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Cazenave, Thierry; Han, Zheng; Naumkin, Ivan Asymptotic behavior for a dissipative nonlinear Schrödinger equation. (English) Zbl 07310979 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021). MSC: 35Q55 35B40 PDF BibTeX XML Cite \textit{T. Cazenave} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021; Zbl 07310979) Full Text: DOI
Juarez-Campos, Beatriz; Naumkin, Pavel I. Large time asymptotics for the higher-order nonlinear nonlocal Schrödinger equation. (English) Zbl 07310978 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112238, 27 p. (2021). MSC: 35B40 35Q55 PDF BibTeX XML Cite \textit{B. Juarez-Campos} and \textit{P. I. Naumkin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112238, 27 p. (2021; Zbl 07310978) Full Text: DOI
Cheng, Xing; Zhao, Zehua; Zheng, Jiqiang Well-posedness for energy-critical nonlinear Schrödinger equation on waveguide manifold. (English) Zbl 07310674 J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021). MSC: 35Q55 78A50 35A01 35A02 PDF BibTeX XML Cite \textit{X. Cheng} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021; Zbl 07310674) Full Text: DOI
Shen, Shunlin The rigorous derivation of the \(\mathbb{T}^2\) focusing cubic NLS from 3D. (English) Zbl 07310593 J. Funct. Anal. 280, No. 8, Article ID 108934, 73 p. (2021). MSC: 82 81 PDF BibTeX XML Cite \textit{S. Shen}, J. Funct. Anal. 280, No. 8, Article ID 108934, 73 p. (2021; Zbl 07310593) Full Text: DOI
Hu, Beibei; Zhang, Ling; Zhang, Ning On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. (English) Zbl 07309653 J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021). MSC: 35Q15 35G31 35Q55 37K15 PDF BibTeX XML Cite \textit{B. Hu} et al., J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021; Zbl 07309653) Full Text: DOI
Fang, Xiang-Dong Multiple solutions of higher topological type for semiclassical nonlinear Schrödinger equations. (English) Zbl 07309485 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021). MSC: 35J20 35J60 49J35 PDF BibTeX XML Cite \textit{X.-D. Fang}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021; Zbl 07309485) Full Text: DOI
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R}^2 \). (English) Zbl 07307695 Manuscr. Math. 164, No. 3-4, 509-542 (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35Q55 35B33 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Manuscr. Math. 164, No. 3--4, 509--542 (2021; Zbl 07307695) Full Text: DOI
Yamano, Takuya; Ourabah, Kamel Gaussian traveling wave solutions for two argument-Schrödinger equations under potentials. (English) Zbl 07307165 Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021). MSC: 35C07 35Q55 PDF BibTeX XML Cite \textit{T. Yamano} and \textit{K. Ourabah}, Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021; Zbl 07307165) Full Text: DOI
Li, Jian; Xia, Tiecheng \(N\)-soliton solutions for the nonlocal Fokas-Lenells equation via RHP. (English) Zbl 07307151 Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021). MSC: 35C08 35Q55 35Q15 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Xia}, Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021; Zbl 07307151) Full Text: DOI
Zhang, Jian; Lou, Zhenluo Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. (English) Zbl 07306518 J. Math. Phys. 62, No. 1, 011506, 14 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q55 35J60 35A15 35A01 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Z. Lou}, J. Math. Phys. 62, No. 1, 011506, 14 p. (2021; Zbl 07306518) Full Text: DOI
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo On the nonlinear Dirac equation on noncompact metric graphs. (English) Zbl 07303711 J. Differ. Equations 278, 326-357 (2021). MSC: 35Q41 35Q55 35B25 35R02 81Q35 47J07 58E07 47A10 PDF BibTeX XML Cite \textit{W. Borrelli} et al., J. Differ. Equations 278, 326--357 (2021; Zbl 07303711) Full Text: DOI
Saanouni, T. Global and non-global solutions for a class of damped fourth-order Schrödinger equations. (English) Zbl 07302084 Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021). MSC: 35Q55 35Q41 35B44 35A01 PDF BibTeX XML Cite \textit{T. Saanouni}, Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021; Zbl 07302084) Full Text: DOI
Ma, Wen-Xiu Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. (English) Zbl 07301333 Proc. Am. Math. Soc. 149, No. 1, 251-263 (2021). MSC: 37K15 37K40 35Q55 35C08 PDF BibTeX XML Cite \textit{W.-X. Ma}, Proc. Am. Math. Soc. 149, No. 1, 251--263 (2021; Zbl 07301333) Full Text: DOI
Kang, Zhou-Zheng; Xia, Tie-Cheng; Ma, Wen-Xiu Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrödinger equation. (English) Zbl 07301278 Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021). MSC: 35Q55 35Q15 37K10 35C08 82D40 PDF BibTeX XML Cite \textit{Z.-Z. Kang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021; Zbl 07301278) Full Text: DOI
Düll, Wolf-Patrick Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. (English) Zbl 07300725 Arch. Ration. Mech. Anal. 239, No. 2, 831-914 (2021). MSC: 35Q31 35Q55 76B15 76B45 PDF BibTeX XML Cite \textit{W.-P. Düll}, Arch. Ration. Mech. Anal. 239, No. 2, 831--914 (2021; Zbl 07300725) Full Text: DOI
Yang, Yunqing; Suzuki, Takashi; Wang, Jianyong Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrödinger equation. (English) Zbl 07299030 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021). MSC: 35Q55 35Q41 37K35 37K10 35C08 PDF BibTeX XML Cite \textit{Y. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021; Zbl 07299030) Full Text: DOI
Clapp, Mónica; Maia, Liliane A.; Pellacci, Benedetta Positive multipeak solutions to a zero mass problem in exterior domains. (English) Zbl 07298832 Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021). MSC: 35Q55 35B09 35J20 PDF BibTeX XML Cite \textit{M. Clapp} et al., Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021; Zbl 07298832) Full Text: DOI
Cao, Daomin; Jia, Huifang; Luo, Xiao Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. (English) Zbl 07297749 J. Differ. Equations 276, 228-263 (2021). MSC: 35J60 35R11 35Q55 35A01 35B40 35B35 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 276, 228--263 (2021; Zbl 07297749) Full Text: DOI
Fukaya, Noriyoshi; Hayashi, Masayuki Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. (English) Zbl 07291903 Trans. Am. Math. Soc. 374, No. 2, 1421-1447 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q41 35A15 35B35 PDF BibTeX XML Cite \textit{N. Fukaya} and \textit{M. Hayashi}, Trans. Am. Math. Soc. 374, No. 2, 1421--1447 (2021; Zbl 07291903) Full Text: DOI
Pellacci, Benedetta; Pistoia, Angela; Vaira, Giusi; Verzini, Gianmaria Normalized concentrating solutions to nonlinear elliptic problems. (English) Zbl 07291361 J. Differ. Equations 275, 882-919 (2021). MSC: 35J91 35B09 35A01 PDF BibTeX XML Cite \textit{B. Pellacci} et al., J. Differ. Equations 275, 882--919 (2021; Zbl 07291361) Full Text: DOI
D. D. Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 07291353 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. D. D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 07291353) Full Text: DOI
Koch, Herbert; Liao, Xian Conserved energies for the one dimensional Gross-Pitaevskii equation. (English) Zbl 07289443 Adv. Math. 377, Article ID 107467, 84 p. (2021). MSC: 35Q55 35Q53 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Koch} and \textit{X. Liao}, Adv. Math. 377, Article ID 107467, 84 p. (2021; Zbl 07289443) Full Text: DOI
Kishimoto, Nobu Unconditional local well-posedness for periodic NLS. (English) Zbl 07289115 J. Differ. Equations 274, 766-787 (2021). MSC: 35Q55 35A02 PDF BibTeX XML Cite \textit{N. Kishimoto}, J. Differ. Equations 274, 766--787 (2021; Zbl 07289115) Full Text: DOI
Adami, Riccardo; Fukuizumi, Reika; Holmer, Justin Scattering for the \(L^2\) supercritical point NLS. (English) Zbl 07288849 Trans. Am. Math. Soc. 374, No. 1, 35-60 (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35B40 35P25 78A60 PDF BibTeX XML Cite \textit{R. Adami} et al., Trans. Am. Math. Soc. 374, No. 1, 35--60 (2021; Zbl 07288849) Full Text: DOI
Chaichenets, Leonid; Pattakos, Nikolaos The global Cauchy problem for the NLS with higher order anisotropic dispersion. (English) Zbl 07286310 Glasg. Math. J. 63, No. 1, 45-53 (2021). MSC: 35Q55 35A01 35A02 35B40 PDF BibTeX XML Cite \textit{L. Chaichenets} and \textit{N. Pattakos}, Glasg. Math. J. 63, No. 1, 45--53 (2021; Zbl 07286310) Full Text: DOI
Deng, Yinbin; Guo, Yujin; Xu, Liangshun Limit behavior of attractive Bose-Einstein condensates passing an obstacle. (English) Zbl 07285693 J. Differ. Equations 272, 370-398 (2021). MSC: 35J10 35Q55 35J91 35J20 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 272, 370--398 (2021; Zbl 07285693) Full Text: DOI
Kairzhan, Adilbek; Marangell, Robert; Pelinovsky, Dmitry E.; Xiao, Ke Liang Standing waves on a flower graph. (English) Zbl 07283597 J. Differ. Equations 271, 719-763 (2021). MSC: 35R02 35Q55 35B32 PDF BibTeX XML Cite \textit{A. Kairzhan} et al., J. Differ. Equations 271, 719--763 (2021; Zbl 07283597) Full Text: DOI
Li, Bang-Qing Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. (English) Zbl 1453.78003 Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021). MSC: 78A40 78A60 35Q51 35Q55 35C08 37K40 PDF BibTeX XML Cite \textit{B.-Q. Li}, Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021; Zbl 1453.78003) Full Text: DOI
Cui, Jin; Xu, Zhuangzhi; Wang, Yushun; Jiang, Chaolong Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation. (English) Zbl 07281310 Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65L06 65P10 35A22 35Q55 PDF BibTeX XML Cite \textit{J. Cui} et al., Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021; Zbl 07281310) Full Text: DOI
Lin, Zeda; Xu, Xiaoxi; Chen, Zikang; Yan, Ziteng; Mai, Zhijie; Liu, Bin Two-dimensional vortex quantum droplets get thick. (English) Zbl 1452.35190 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105536, 8 p. (2021). MSC: 35Q55 82D50 82C10 PDF BibTeX XML Cite \textit{Z. Lin} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105536, 8 p. (2021; Zbl 1452.35190) Full Text: DOI
Bayındır, Cihan; Altintas, Azmi Ali; Ozaydin, Fatih Self-localized solitons of a \(q\)-deformed quantum system. (English) Zbl 1453.35160 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021). MSC: 35Q55 35Q41 35C08 35B35 35B44 65N35 65L06 60H40 81Q05 PDF BibTeX XML Cite \textit{C. Bayındır} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021; Zbl 1453.35160) Full Text: DOI
Feng, Xiaojing Nontrivial solution for Schrödinger-Poisson equations involving the fractional Laplacian with critical exponent. (English) Zbl 07273579 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021). MSC: 35J60 35R11 35B33 35A15 35A01 PDF BibTeX XML Cite \textit{X. Feng}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021; Zbl 07273579) Full Text: DOI
Schratz, Katharina; Wang, Yan; Zhao, Xiaofei Low-regularity integrators for nonlinear Dirac equations. (English) Zbl 1450.35231 Math. Comput. 90, No. 327, 189-214 (2021). MSC: 35Q41 65M70 65N35 65M12 65M15 65M06 35B65 35S30 PDF BibTeX XML Cite \textit{K. Schratz} et al., Math. Comput. 90, No. 327, 189--214 (2021; Zbl 1450.35231) Full Text: DOI
Campos, Luccas Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation. (English) Zbl 1452.35179 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112118, 17 p. (2021). MSC: 35Q55 35P25 35B45 PDF BibTeX XML Cite \textit{L. Campos}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112118, 17 p. (2021; Zbl 1452.35179) Full Text: DOI
Wang, Li; Yan, Zhenya Rogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentials. (English) Zbl 1451.35201 Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021). MSC: 35Q55 81Q05 35C08 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Z. Yan}, Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021; Zbl 1451.35201) Full Text: DOI
Wang, Xiu-Bin; Han, Bo Solitons in nonlinear systems with higher-order effects. (English) Zbl 1451.35202 Appl. Math. Lett. 111, Article ID 106656, 5 p. (2021). MSC: 35Q55 78A60 35C08 65D18 PDF BibTeX XML Cite \textit{X.-B. Wang} and \textit{B. Han}, Appl. Math. Lett. 111, Article ID 106656, 5 p. (2021; Zbl 1451.35202) Full Text: DOI
Xing, F. New optimized Schwarz algorithms for one dimensional Schrödinger equation with general potential. (English) Zbl 07246880 J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021). MSC: 65N55 65M55 65M06 65F05 65F08 65F10 65Y05 35Q55 PDF BibTeX XML Cite \textit{F. Xing}, J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021; Zbl 07246880) Full Text: DOI
Binhua, Feng; Chen, Ruipeng; Liu, Jiayin Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation. (English) Zbl 1447.35291 Adv. Nonlinear Anal. 10, 311-330 (2021). MSC: 35Q55 35J10 35B44 35B35 35R11 26A33 PDF BibTeX XML Cite \textit{F. Binhua} et al., Adv. Nonlinear Anal. 10, 311--330 (2021; Zbl 1447.35291) Full Text: DOI
Dinh, Van Duong Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials. (English) Zbl 07316380 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252-3292 (2020). MSC: 35A15 35B44 35J35 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252--3292 (2020; Zbl 07316380) Full Text: DOI
Marroquin, Daniel R. Recent progress on the study of the short wave-Long wave interactions system for aurora-type phenomena. (English) Zbl 07315505 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 554-561 (2020). MSC: 76W05 76N10 35Q35 35Q55 PDF BibTeX XML Cite \textit{D. R. Marroquin}, AIMS Ser. Appl. Math. 10, 554--561 (2020; Zbl 07315505)
Jagtap, Ameya D. Higher order scheme for sine-Gordon equation in nonlinear non-homogeneous media. (English) Zbl 07315494 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 465-474 (2020). MSC: 35Q55 78A48 35C08 39A12 33C45 PDF BibTeX XML Cite \textit{A. D. Jagtap}, AIMS Ser. Appl. Math. 10, 465--474 (2020; Zbl 07315494)
Li, Jibin; Han, Maoan Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations. (English) Zbl 07315435 J. Appl. Anal. Comput. 10, No. 4, 1708-1719 (2020). MSC: 35C07 34A34 37L45 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Han}, J. Appl. Anal. Comput. 10, No. 4, 1708--1719 (2020; Zbl 07315435) Full Text: DOI
Raza, Nauman; Javid, Ahmad Modulation instability and optical solitons of Radhakrishnan-Kundu-Lakshmanan model. (English) Zbl 07315414 J. Appl. Anal. Comput. 10, No. 4, 1375-1395 (2020). MSC: 78A60 35Q51 35Q55 PDF BibTeX XML Cite \textit{N. Raza} and \textit{A. Javid}, J. Appl. Anal. Comput. 10, No. 4, 1375--1395 (2020; Zbl 07315414) Full Text: DOI
Wu, Yuan; Yuan, Xiaoping On the existence of full dimensional KAM torus for fractional nonlinear Schrödinger equation. (English) Zbl 07315122 J. Appl. Anal. Comput. 10, No. 2, 771-794 (2020). MSC: 37K55 35Q55 35R11 PDF BibTeX XML Cite \textit{Y. Wu} and \textit{X. Yuan}, J. Appl. Anal. Comput. 10, No. 2, 771--794 (2020; Zbl 07315122) Full Text: DOI
Yang, Jin-Jie; Tian, Shou-Fu Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions. (English. Russian original) Zbl 07314346 Theor. Math. Phys. 205, No. 3, 1611-1637 (2020); translation from Teor. Mat. Fiz. 205, No. 3, 420-450 (2020). MSC: 35Q55 35Q15 35C08 81U20 35P25 PDF BibTeX XML Cite \textit{J.-J. Yang} and \textit{S.-F. Tian}, Theor. Math. Phys. 205, No. 3, 1611--1637 (2020; Zbl 07314346); translation from Teor. Mat. Fiz. 205, No. 3, 420--450 (2020) Full Text: DOI
El-Rashidy, K.; Seadawy, Aly R. Kinky breathers, multi-peak and multi-wave soliton solutions for the nonlinear propagation of Kundu-Eckhaus dynamical model. (English) Zbl 07312248 Int. J. Mod. Phys. B 34, No. 32, Article ID 2050317, 10 p. (2020). MSC: 35Q55 35C08 35A22 PDF BibTeX XML Cite \textit{K. El-Rashidy} and \textit{A. R. Seadawy}, Int. J. Mod. Phys. B 34, No. 32, Article ID 2050317, 10 p. (2020; Zbl 07312248) Full Text: DOI
Cheemaa, N.; Chen, S.; Seadawy, A. R. Chiral soliton solutions of perturbed chiral nonlinear Schrödinger equation with its applications in mathematical physics. (English) Zbl 07312231 Int. J. Mod. Phys. B 34, No. 31, Article ID 2050301, 18 p. (2020). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{N. Cheemaa} et al., Int. J. Mod. Phys. B 34, No. 31, Article ID 2050301, 18 p. (2020; Zbl 07312231) Full Text: DOI
Ali, I.; Seadawy, A. R.; Rizvi, S. T. R.; Younis, M.; Ali, K. Conserved quantities along with Painlevé analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. (English) Zbl 07312212 Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020). MSC: 35Q55 78A60 35C07 35C08 PDF BibTeX XML Cite \textit{I. Ali} et al., Int. J. Mod. Phys. B 34, No. 30, Article ID 2050283, 15 p. (2020; Zbl 07312212) Full Text: DOI
Muda, Yuslenita; Akbar, Fiki T.; Kusdiantara, Rudy; Gunara, Bobby E.; Susanto, Hadi Reduction of a damped, driven Klein-Gordon equation into a discrete nonlinear Schrödinger equation: justification and numerical comparison. (English) Zbl 07311878 Asymptotic Anal. 120, No. 1-2, 73-86 (2020). MSC: 35Q PDF BibTeX XML Cite \textit{Y. Muda} et al., Asymptotic Anal. 120, No. 1--2, 73--86 (2020; Zbl 07311878) Full Text: DOI
Masaki, Satoshi A survey on long range scattering for Schrödinger equation and Klein-Gordon equation with critical nonlinearity of non-polynomial type. (English) Zbl 07311532 RIMS Kôkyûroku Bessatsu B82, 103-135 (2020). MSC: 35Q55 35P25 81Q05 81U99 PDF BibTeX XML Cite \textit{S. Masaki}, RIMS Kôkyûroku Bessatsu B82, 103--135 (2020; Zbl 07311532) Full Text: Link
Capistrano-Filho, Roberto de A.; Cavalcante, Márcio; Gallego, Fernando A. Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane. (English) Zbl 07307881 Pac. J. Math. 309, No. 1, 35-70 (2020). MSC: 35Q55 35A01 35A02 35C15 35G15 35G30 35B65 PDF BibTeX XML Cite \textit{R. de A. Capistrano-Filho} et al., Pac. J. Math. 309, No. 1, 35--70 (2020; Zbl 07307881) Full Text: DOI
Li, Anran; Wang, Peiting; Wei, Chongqing Ground state solutions for nonlinearly coupled systems of Choquard type with lower critical exponent. (English) Zbl 07307869 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020). MSC: 35J10 35J60 35J65 PDF BibTeX XML Cite \textit{A. Li} et al., Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 56, 18 p. (2020; Zbl 07307869) Full Text: DOI
Shang, Tingting; Liang, Ruixi Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials. (English) Zbl 07307863 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 50, 18 p. (2020). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{T. Shang} and \textit{R. Liang}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 50, 18 p. (2020; Zbl 07307863) Full Text: DOI
Dohnal, Tomáš; Rudolf, Daniel NLS approximation for wavepackets in periodic cubically nonlinear wave problems in \(\mathbb{R}^d\). (English) Zbl 07304781 Appl. Anal. 99, No. 10, 1685-1723 (2020). MSC: 35Q55 35Q60 35L71 41A60 35C08 65N25 65N06 65L06 65T50 PDF BibTeX XML Cite \textit{T. Dohnal} and \textit{D. Rudolf}, Appl. Anal. 99, No. 10, 1685--1723 (2020; Zbl 07304781) Full Text: DOI
Iqbal, Azhar; Abd Hamid, Nur Nadiah; Md. Ismail, Ahmad Izani Cubic B-spline Galerkin method for numerical solution of the coupled nonlinear Schrödinger equation. (English) Zbl 1453.65325 Math. Comput. Simul. 174, 32-44 (2020). MSC: 65M60 65M12 35Q55 PDF BibTeX XML Cite \textit{A. Iqbal} et al., Math. Comput. Simul. 174, 32--44 (2020; Zbl 1453.65325) Full Text: DOI
Miyaji, Tomoyuki; Ohnishi, Isamu; Tsutsumi, Yoshio Erratum to: “Stability of stationary solution for the Lugiato-Lefever equation”. (English) Zbl 07303960 Tohoku Math. J. (2) 72, No. 3, 487-492 (2020). MSC: 35Q55 35B35 PDF BibTeX XML Cite \textit{T. Miyaji} et al., Tohoku Math. J. (2) 72, No. 3, 487--492 (2020; Zbl 07303960) Full Text: DOI Euclid
Nguyen, Nghiem V.; Liu, Chuangye Some models for the interaction of long and short waves in dispersive media. I: Derivation. (English) Zbl 07302963 Water Waves 2, No. 2, 327-359 (2020). MSC: 35Q31 35Q55 35Q41 35Q53 35A15 35B35 76B15 PDF BibTeX XML Cite \textit{N. V. Nguyen} and \textit{C. Liu}, Water Waves 2, No. 2, 327--359 (2020; Zbl 07302963) Full Text: DOI
Wang, Tingchun; Wang, Jialing; Guo, Boling Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation. (English) Zbl 1453.65366 J. Comput. Phys. 404, Article ID 109116, 21 p. (2020). MSC: 65M70 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Comput. Phys. 404, Article ID 109116, 21 p. (2020; Zbl 1453.65366) Full Text: DOI
Gürbüz, Nevin; Yoon, Dae Won Hasimoto surfaces for two classes of curve evolution in Minkowski 3-space. (English) Zbl 07299080 Demonstr. Math. 53, 277-284 (2020). MSC: 53Z05 81Q70 PDF BibTeX XML Cite \textit{N. Gürbüz} and \textit{D. W. Yoon}, Demonstr. Math. 53, 277--284 (2020; Zbl 07299080) Full Text: DOI
Oh, Tadahiro; Okamoto, Mamoru On the stochastic nonlinear Schrödinger equations at critical regularities. (English) Zbl 1452.35192 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 869-894 (2020). MSC: 35Q55 PDF BibTeX XML Cite \textit{T. Oh} and \textit{M. Okamoto}, Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 869--894 (2020; Zbl 1452.35192) Full Text: DOI
Tao, Zhaoling; Chen, Xiwang Soliton solutions of fiber nonlinear Schrödinger equation with variable coefficients. (Chinese. English summary) Zbl 07296107 Numer. Math., Nanjing 42, No. 2, 97-105 (2020). MSC: 35C08 35Q55 PDF BibTeX XML Cite \textit{Z. Tao} and \textit{X. Chen}, Numer. Math., Nanjing 42, No. 2, 97--105 (2020; Zbl 07296107)
Li, Desheng; Li, Hua A conservative difference scheme for nonlinear fourth-order Schrödinger equation. (Chinese. English summary) Zbl 07295676 J. Shenyang Norm. Univ., Nat. Sci. 38, No. 3, 256-260 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{D. Li} and \textit{H. Li}, J. Shenyang Norm. Univ., Nat. Sci. 38, No. 3, 256--260 (2020; Zbl 07295676) Full Text: DOI
Li, Yongsheng; Xiang, Shaoting; Fu, Yiping Numerical solution to a kind of the nonlinear Schrödinger equation. (Chinese. English summary) Zbl 07295326 J. Henan Norm. Univ., Nat. Sci. 48, No. 5, 22-30 (2020). MSC: 65M06 65M12 35Q55 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Henan Norm. Univ., Nat. Sci. 48, No. 5, 22--30 (2020; Zbl 07295326) Full Text: DOI
Li, Shuangshuang A new blow-up criterion for the nonhomogeneous nonlinear Schrödinger equation. (Chinese. English summary) Zbl 07295233 J. East China Norm. Univ., Nat. Sci. Ed., No. 4, 64-71 (2020). MSC: 35B44 35Q55 PDF BibTeX XML Cite \textit{S. Li}, J. East China Norm. Univ., Nat. Sci. Ed. , No. 4, 64--71 (2020; Zbl 07295233) Full Text: DOI
Chen, Yusong; Chang, Hejie Existence and concentration of solutions for an indefinite Schrödinger-Kirchhoff system. (English) Zbl 07295052 Chin. Q. J. Math. 35, No. 1, 37-45 (2020). MSC: 35J05 35J20 35J60 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{H. Chang}, Chin. Q. J. Math. 35, No. 1, 37--45 (2020; Zbl 07295052) Full Text: DOI
Banquet, Carlos; Villamizar-Roa, Élder J. On the management fourth-order Schrödinger-Hartree equation. (English) Zbl 1452.35178 Evol. Equ. Control Theory 9, No. 3, 865-889 (2020). MSC: 35Q55 35A01 35B40 35G25 PDF BibTeX XML Cite \textit{C. Banquet} and \textit{É. J. Villamizar-Roa}, Evol. Equ. Control Theory 9, No. 3, 865--889 (2020; Zbl 1452.35178) Full Text: DOI
Saanouni, Tarek Remarks on the damped nonlinear Schrödinger equation. (English) Zbl 1452.35194 Evol. Equ. Control Theory 9, No. 3, 721-732 (2020). MSC: 35Q55 37K10 PDF BibTeX XML Cite \textit{T. Saanouni}, Evol. Equ. Control Theory 9, No. 3, 721--732 (2020; Zbl 1452.35194) Full Text: DOI
Yun, Yongzhen; An, Tianqing; Ye, Guoju; Zuo, Jiabin Existence of solutions for asymptotically periodic fractional Schrödinger equation with critical growth. (English) Zbl 07292722 Math. Methods Appl. Sci. 43, No. 17, 10081-10097 (2020). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Yun} et al., Math. Methods Appl. Sci. 43, No. 17, 10081--10097 (2020; Zbl 07292722) Full Text: DOI
Al-Amr, Mohammed O.; Rezazadeh, Hadi; Ali, Khalid K.; Korkmazki, Alper N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities. (English) Zbl 1451.35047 Commun. Theor. Phys. 72, No. 6, Article ID 065503, 7 p. (2020). MSC: 35C08 35Q55 PDF BibTeX XML Cite \textit{M. O. Al-Amr} et al., Commun. Theor. Phys. 72, No. 6, Article ID 065503, 7 p. (2020; Zbl 1451.35047) Full Text: DOI
Younis, Muhammad; Sulaiman, Tukur Abdulkadir; Bilal, Muhammad; Rehman, Shafqat Ur; Younas, Usman Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. (English) Zbl 1451.82022 Commun. Theor. Phys. 72, No. 6, Article ID 065001, 12 p. (2020). MSC: 82B44 76B15 35Q55 PDF BibTeX XML Cite \textit{M. Younis} et al., Commun. Theor. Phys. 72, No. 6, Article ID 065001, 12 p. (2020; Zbl 1451.82022) Full Text: DOI
Sulaiman, Tukur Abdulkadir; Bulut, Hasan Optical solitons and modulation instability analysis of the \((1+1)\)-dimensional coupled nonlinear Schrödinger equation. (English) Zbl 1451.35197 Commun. Theor. Phys. 72, No. 2, Article ID 025003, 6 p. (2020). MSC: 35Q55 35Q51 35C08 PDF BibTeX XML Cite \textit{T. A. Sulaiman} and \textit{H. Bulut}, Commun. Theor. Phys. 72, No. 2, Article ID 025003, 6 p. (2020; Zbl 1451.35197) Full Text: DOI
Cheng, Bin; Chen, Ya-Ming; Xu, Chuan-Fu; Li, Da-Li; Deng, Xiao-Gang Nonlinear Schrödinger equation with a Dirac delta potential: finite difference method. (English) Zbl 1451.35181 Commun. Theor. Phys. 72, No. 2, Article ID 025001, 6 p. (2020). MSC: 35Q55 81Q05 PDF BibTeX XML Cite \textit{B. Cheng} et al., Commun. Theor. Phys. 72, No. 2, Article ID 025001, 6 p. (2020; Zbl 1451.35181) Full Text: DOI
Zhang, Yongshuai; Tao, Xiangxing; Yao, Tengteng; He, Jingsong The regularity of the multiple higher-order poles solitons of the NLS equation. (English) Zbl 07288993 Stud. Appl. Math. 145, No. 4, 812-827 (2020). MSC: 35 78 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Stud. Appl. Math. 145, No. 4, 812--827 (2020; Zbl 07288993) Full Text: DOI
Yang, Kai; Roudenko, Svetlana; Zhao, Yanxiang Stable blow-up dynamics in the \(L^2\)-critical and \(L^2\)-supercritical generalized Hartree equation. (English) Zbl 07288987 Stud. Appl. Math. 145, No. 4, 647-695 (2020). MSC: 35B44 35Q55 PDF BibTeX XML Cite \textit{K. Yang} et al., Stud. Appl. Math. 145, No. 4, 647--695 (2020; Zbl 07288987) Full Text: DOI
Gladkikh, A. A.; Malinetskiĭ, G. G. Nonlinear Dirac equation for graphene. (Russian. English summary) Zbl 07288903 Mat. Model. 32, No. 8, 43-56 (2020). MSC: 35Q41 82D80 82D40 65M06 PDF BibTeX XML Cite \textit{A. A. Gladkikh} and \textit{G. G. Malinetskiĭ}, Mat. Model. 32, No. 8, 43--56 (2020; Zbl 07288903) Full Text: DOI MNR
Freĭnkman, B. G. Self-consistent calculation of the ground state of a hydrogen-like carbon atom in a graphene lattice. (Russian. English summary) Zbl 07288901 Mat. Model. 32, No. 8, 21-30 (2020). MSC: 82D80 82B20 81V45 35Q55 PDF BibTeX XML Cite \textit{B. G. Freĭnkman}, Mat. Model. 32, No. 8, 21--30 (2020; Zbl 07288901) Full Text: DOI MNR
Dinh, Van Duong; Keraani, Sahbi; Majdoub, Mohamed Long time dynamics for the focusing nonlinear Schrödinger equation with exponential nonlinearities. (English) Zbl 07288896 Dyn. Partial Differ. Equ. 17, No. 4, 329-360 (2020). MSC: 35Q55 35Q41 35P25 35B44 35B40 35A01 PDF BibTeX XML Cite \textit{V. D. Dinh} et al., Dyn. Partial Differ. Equ. 17, No. 4, 329--360 (2020; Zbl 07288896) Full Text: DOI
Bensouilah, A.; Draouil, D.; Majdoub, M. A 2D Schrödinger equation with time-oscillating exponential nonlinearity. (English) Zbl 07288895 Dyn. Partial Differ. Equ. 17, No. 4, 307-327 (2020). MSC: 35Q41 35Q55 35B45 35B20 35A01 35A02 PDF BibTeX XML Cite \textit{A. Bensouilah} et al., Dyn. Partial Differ. Equ. 17, No. 4, 307--327 (2020; Zbl 07288895) Full Text: DOI
Wang, Youjun; Zhang, Yimin Positive solutions for a relativistic nonlinear Schrödinger equation with square-root nonlinearity. (English) Zbl 07287310 J. Math. Phys. 61, No. 11, 111509, 14 p. (2020). MSC: 35Q55 35A15 78A60 35B09 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Zhang}, J. Math. Phys. 61, No. 11, 111509, 14 p. (2020; Zbl 07287310) Full Text: DOI
Kaikina, Elena I.; Sotelo-Garcia, Norma Stochastic nonlinear Schrödinger equation on an upper-right quarter plane with Dirichlet random boundary. (English) Zbl 07287260 J. Math. Phys. 61, No. 10, 101509, 15 p. (2020). MSC: 35Q55 35Q41 35R60 60H40 35A01 35A02 PDF BibTeX XML Cite \textit{E. I. Kaikina} and \textit{N. Sotelo-Garcia}, J. Math. Phys. 61, No. 10, 101509, 15 p. (2020; Zbl 07287260) Full Text: DOI
Guo, Zihua; Shen, Jia Scattering below the ground state for the 2D non-linear Schrödinger and Klein-Gordon equations revisited. (English) Zbl 07287186 J. Math. Phys. 61, No. 8, 081507, 20 p. (2020). MSC: 35Q55 35Q41 35P25 35B45 81U05 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{J. Shen}, J. Math. Phys. 61, No. 8, 081507, 20 p. (2020; Zbl 07287186) Full Text: DOI
Nakamura, Makoto On the nonrelativistic limit of a semilinear field equation in a homogeneous and isotropic space. (English) Zbl 07286666 Kyoto J. Math. 60, No. 4, 1333-1359 (2020). MSC: 35Q75 35Q76 35L71 35A01 35B44 35Q55 35K58 83C05 83F05 PDF BibTeX XML Cite \textit{M. Nakamura}, Kyoto J. Math. 60, No. 4, 1333--1359 (2020; Zbl 07286666) Full Text: DOI Euclid
Oh, Tadahiro; Pocovnicu, Oana; Wang, Yuzhao On the stochastic nonlinear Schrödinger equations with nonsmooth additive noise. (English) Zbl 07286663 Kyoto J. Math. 60, No. 4, 1227-1243 (2020). MSC: 35Q55 60H40 35R60 35A01 35A02 PDF BibTeX XML Cite \textit{T. Oh} et al., Kyoto J. Math. 60, No. 4, 1227--1243 (2020; Zbl 07286663) Full Text: DOI Euclid
Katayama, Soichiro; Sakoda, Daisuke Asymptotic behavior for a class of derivative nonlinear Schrödinger systems. (English) Zbl 1451.35187 SN Partial Differ. Equ. Appl. 1, No. 3, Paper No. 12, 41 p. (2020). MSC: 35Q55 35B50 PDF BibTeX XML Cite \textit{S. Katayama} and \textit{D. Sakoda}, SN Partial Differ. Equ. Appl. 1, No. 3, Paper No. 12, 41 p. (2020; Zbl 1451.35187) Full Text: DOI
Molica Bisci, Giovanni A group-theoretical approach for nonlinear Schrödinger equations. (English) Zbl 07285880 Adv. Calc. Var. 13, No. 4, 403-423 (2020). MSC: 49J20 35J91 35J60 35A01 35D30 PDF BibTeX XML Cite \textit{G. Molica Bisci}, Adv. Calc. Var. 13, No. 4, 403--423 (2020; Zbl 07285880) Full Text: DOI
Coles, Matt; Gustafson, Stephen Solitary waves and dynamics for subcritical perturbations of energy critical NLS. (English) Zbl 07285664 Publ. Res. Inst. Math. Sci. 56, No. 4, 647-699 (2020). MSC: 35Q55 35Q41 35C08 35P25 35B44 35B25 35B06 PDF BibTeX XML Cite \textit{M. Coles} and \textit{S. Gustafson}, Publ. Res. Inst. Math. Sci. 56, No. 4, 647--699 (2020; Zbl 07285664) Full Text: DOI
Feng, Wei; Zhao, Song-Lin Soliton solutions to the nonlocal non-isospectral nonlinear Schrödinger equation. (English) Zbl 1451.35183 Int. J. Mod. Phys. B 34, No. 25, Article ID 2050219, 14 p. (2020). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{W. Feng} and \textit{S.-L. Zhao}, Int. J. Mod. Phys. B 34, No. 25, Article ID 2050219, 14 p. (2020; Zbl 1451.35183) Full Text: DOI
Matveev, V. B.; Smirnov, A. O. Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: general analysis and simplest examples. (English. Russian original) Zbl 1453.81017 Theor. Math. Phys. 204, No. 3, 1154-1165 (2020); translation from Teor. Mat. Fiz. 204, No. 3, 383-395 (2020). MSC: 81Q05 35Q55 81R05 35Q53 37K10 PDF BibTeX XML Cite \textit{V. B. Matveev} and \textit{A. O. Smirnov}, Theor. Math. Phys. 204, No. 3, 1154--1165 (2020; Zbl 1453.81017); translation from Teor. Mat. Fiz. 204, No. 3, 383--395 (2020) Full Text: DOI
Kwon, Soonsik; Oh, Tadahiro; Yoon, Haewon Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line. (English. French summary) Zbl 07283617 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 3, 649-720 (2020). MSC: 35Q55 35Q53 35A01 35A02 35D30 PDF BibTeX XML Cite \textit{S. Kwon} et al., Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 3, 649--720 (2020; Zbl 07283617) Full Text: DOI
Musaeva, M. A. Variational method for determining the complex-valued coefficients of a nonlinear nonstationary Schrödinger-type equation. (English. Russian original) Zbl 07283507 Comput. Math. Math. Phys. 60, No. 11, 1923-1935 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1985-1997 (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78A46 78A60 81V10 35Q55 35Q41 35R30 35R25 35A15 65J20 49J20 PDF BibTeX XML Cite \textit{M. A. Musaeva}, Comput. Math. Math. Phys. 60, No. 11, 1923--1935 (2020; Zbl 07283507); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1985--1997 (2020) Full Text: DOI
Zhang, Zaiyun; Liu, Zhenhai; Sun, Mingbao Wellposedness and asymptotic behavior of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity and localized damping. (English) Zbl 07282211 Funkc. Ekvacioj, Ser. Int. 63, No. 3, 293-322 (2020). MSC: 35Q55 35K60 78A60 35B20 35B45 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Funkc. Ekvacioj, Ser. Int. 63, No. 3, 293--322 (2020; Zbl 07282211) Full Text: DOI