×

An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. (English) Zbl 1242.74111

Summary: We demonstrate that traditional cohesive zone (CZ) elements cannot be accurate when used in conjunction with solid elements with arbitrary intra-element cracking capability, because they cannot capture the load transfer between cohesive interfaces and the solid elements when crack bifurcation or coalescence occurs. An augmented cohesive zone (ACZ) element based on the augmented finite element method formulation is therefore proposed. The new element allows for arbitrary separation of the cohesive element in accordance with the crack configuration of the abutting solid elements, thus correctly maintaining the non-linear coupling between merging or bifurcating cracks. Numerical accuracy and effectiveness of the proposed ACZ element are demonstrated through several examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pineda, Progressive damage and failure modeling in notched laminated fiber reinforced composites, International Journal of Fracture 158 pp 125– (2009) · Zbl 1400.74103 · doi:10.1007/s10704-009-9370-3
[2] Loehnert, A multiscale projection method for macro/microcrack simulations, International Journal for Numerical Methods in Engineering 71 (12) pp 1466– (2007) · Zbl 1194.74436 · doi:10.1002/nme.2001
[3] Hettich, Modeling of failure in composites by X-FEM and level sets within a multiscale framework, Computer Methods in Applied Mechanics and Engineering 197 (5) pp 414– (2008) · Zbl 1169.74543 · doi:10.1016/j.cma.2007.07.017
[4] Cox, In quest of virtual tests for structural composites, Science 314 pp 1102– (2006) · doi:10.1126/science.1131624
[5] Van de Meer, A phantom node formulation with mixed mode cohesive law for splitting in laminates, International Journal of Fracture 158 pp 107– (2009) · Zbl 1400.74106 · doi:10.1007/s10704-009-9344-5
[6] de Borst, Numerical aspects of cohesive zone models, Engineering Fracture Mechanics 70 pp 1743– (2003) · doi:10.1016/S0013-7944(03)00122-X
[7] Moes, Finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering 46 pp 131– (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[8] Belytschko, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45 pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[9] Daux, Arbitrary branched and intersecting cracks with the extended finite element method, International Journal for Numerical Methods in Engineering 48 pp 1741– (2000) · Zbl 0989.74066 · doi:10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
[10] Dolbow, Discontinuous enrichment in finite elements with a partition of unity method, Finite Elements in Analysis and Design 36 pp 235– (2000) · Zbl 0981.74057 · doi:10.1016/S0168-874X(00)00035-4
[11] Melenk, The partition of unity finite element method: basic theory and applications, Computational methods in Applied Mechanics and Engineering 139 pp 289– (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[12] Babuška, The partition of unity method, International Journal for Numerical Methods in Engineering 40 pp 727– (1997) · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[13] Zi, A method for growing multiple cracks without remeshing and its application to fatigue crack growth, Modelling and Simulation in Materials Science and Engineering 12 pp 901– (2004) · doi:10.1088/0965-0393/12/5/009
[14] Huynh, The extended finite element method for fracture in composite materials, International Journal for Numerical Methods in Engineering 77 pp 214– (2009) · Zbl 1257.74153 · doi:10.1002/nme.2411
[15] Song, A method for dynamic crack and shear band propagation with phantom nodes, International Journal for Numerical Methods in Engineering 67 pp 868– (2006) · Zbl 1113.74078 · doi:10.1002/nme.1652
[16] Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computational methods in Applied Mechanics and Engineering 193 pp 3523– (2004) · Zbl 1068.74076 · doi:10.1016/j.cma.2003.12.041
[17] Ling, An augmented finite element method for modeling arbitrary discontinuities in composite materials, International Journal of Fracture 156 pp 53– (2009) · Zbl 1273.74540 · doi:10.1007/s10704-009-9347-2
[18] Fang, High-fidelity simulations of multiple fracture processes in a laminated composites in tension, Journal of the Mechanics and Physics of Solids (2010)
[19] Jager, On local tracking algorithms for the simulation of three-dimensional discontinuities, Computational Mechanics 42 pp 395– (2008) · Zbl 1173.74044 · doi:10.1007/s00466-008-0249-3
[20] Mergheim, A finite element method for the computational modeling of cohesive cracks, International Journal for Numerical Methods in Engineering 63 pp 276– (2005) · Zbl 1118.74349 · doi:10.1002/nme.1286
[21] Mergheim, Towards the algorithmic treatment of 3D strong discontinuities, Communications in Numerical Methods in Engineering 23 pp 97– (2007) · Zbl 1107.74045 · doi:10.1002/cnm.885
[22] Remmers JC Discontinuities in materials and structures-a unifying computational approach 2006
[23] de Borst, Mesh-independent discrete numerical representations of cohesive-zone models, Engineering Fracture Mechanics 73 (2) pp 160– (2006) · doi:10.1016/j.engfracmech.2005.05.007
[24] Van de Meer, Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure, Composite Science and Technology 70 pp 692– (2010) · doi:10.1016/j.compscitech.2010.01.003
[25] Duan, Element-local level set method for threedimensional dynamic crack growth, International Journal for Numerical Methods in Engineering 80 pp 1520– (2009) · Zbl 1183.74269 · doi:10.1002/nme.2665
[26] Song, Dynamic fracture of shells subjected to impulsive loads, Journal of Applied Mechanics 76 pp 0513011:1– (2006)
[27] Areias, Analysis of fracture in thin shells by overlapping paired elements, Computer Methods in Applied Mechanics and Engineering 195 pp 5343– (2006) · Zbl 1120.74048 · doi:10.1016/j.cma.2005.10.024
[28] Areias, A finite-strain quadrilateral shell element based on discrete Kirchhoff-Love constraints, International Journal for Numerical Methods in Engineering 64 pp 1166– (2005) · Zbl 1113.74063 · doi:10.1002/nme.1389
[29] Remmers, A cohesive segments method for the simulation of crack growth, Computational Mechanics 31 pp 69– (2003) · Zbl 1038.74679 · doi:10.1007/s00466-002-0394-z
[30] Yang, Mixed mode fracture of plastically-deforming adhesive joints, International Journal of Fracture 110 pp 175– (2001) · doi:10.1023/A:1010869706996
[31] Yang, Cohesive models for damage evolution in laminated composites, International Journal of Fracture 133 pp 107– (2005) · Zbl 1196.74231 · doi:10.1007/s10704-005-4729-6
[32] Xie, Discrete cohesive zone model to simulate static fracture in 2D tri-axially briaded carbon fiber composites, Journal of Composite Materials 40 pp 2025– (2006) · doi:10.1177/0021998306061320
[33] Camanho, Numerical simulation of mixed-mode progressive delamination in composite materials, Journal of Composite Materials 37 pp 1415– (2003) · doi:10.1177/0021998303034505
[34] Camanho, Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear, Composite Part A: Applied Science and Manufacturing 37 pp 165– (2006) · doi:10.1016/j.compositesa.2005.04.023
[35] Wisnom, Modelling of splitting and delamination in notched cross-ply laminates, Composites Science and Technology 60 pp 2849– (2000) · doi:10.1016/S0266-3538(00)00170-6
[36] Shetty, A Shear-lag analysis of fiber push-out (indentation) tests for estimating interfacial friction stress in ceramic-matrix composites, Journal of the American Ceramic Society 71 (2) pp C-107– (1988) · doi:10.1111/j.1151-2916.1988.tb05843.x
[37] Moës, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering 46 pp 131– (1999) · Zbl 0955.74066
[38] Ling, Nonlinear fracture analysis of delamination crack jumps in laminated composites, Journal of Aerospace Engineering (2011) · doi:10.1061/(ASCE)AS.1943-5525.0000008
[39] Gonzalez, Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implication for homogenization models, Journal of the Mechanics and Physics of Solids 52 pp 1573– (2004) · Zbl 1103.74020 · doi:10.1016/j.jmps.2004.01.002
[40] Gonzalez, Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling, Composites Science and Technology 67 (13) pp 2795– (2007) · doi:10.1016/j.compscitech.2007.02.001
[41] Canal, Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear, International Journal of Solid and Structures 46 pp 2265– (2009) · Zbl 1219.74043 · doi:10.1016/j.ijsolstr.2009.01.014
[42] Moraleda, Effect of interface fracture on the tensile deformation of fiber-reinforced elastomers, International Journal of Solids and Structures 46 pp 4287– (2009) · Zbl 1176.74160 · doi:10.1016/j.ijsolstr.2009.08.020
[43] Cid Alfaro, Numerical homogenization of cracking process in thin fiber-epoxy layers, European Journal of Mechanics: A/Solids 29 pp 119– (2010) · doi:10.1016/j.euromechsol.2009.09.006
[44] Xu, Numerical simulations of fast crack growth in brittle solids, Journal of the Mechanics and Physics of Solids 42 (9) pp 1397– (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[45] Hutchinson, Mechanics of materials: top-down approaches to fracture, Acta Materialia 48 pp 125– (2000) · doi:10.1016/S1359-6454(99)00291-8
[46] Löhner, The numerical simulation of strongly unsteady flow with hundreds of moving bodies, International Journal for Numerical Methods in Fluids 31 (1) pp 113– (1999) · Zbl 0986.76043 · doi:10.1002/(SICI)1097-0363(19990915)31:1<113::AID-FLD958>3.0.CO;2-Q
[47] de Borst, Fracture in quasi-brittle materials-a review of continuum damage-based approach, Engineering Fracture Mechanics 69 pp 95– (2002) · doi:10.1016/S0013-7944(01)00082-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.