×

Damage modelling in metal forming problems using an implicit non-local gradient model. (English) Zbl 1120.74771

Summary: A non-local gradient damage formulation, based on an improved Lemaitre damage model, is adopted in order to address the modelling of internal damage of the material in metal forming processes, like forging, or to describe processes in which fracture is a part of the process itself, as in sheet blanking or metal cutting. The damage model takes into account the effect of partial crack closure by affecting damage growth differently in compression or in tension. A non-local damage field is introduced, by means of a diffusion differential equation, dependent on a characteristic length parameter in order to avoid mesh size and orientation dependence of the model.

MSC:

74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lemaitre, J. A., A Course on Damage Mechanics (1996), Springer-Verlag · Zbl 0852.73003
[2] Cockcroft, M. G.; Latham, D. J., Ductility and the workability of metals, J. Inst. Met., 96, 33-39 (1968)
[3] McClintock, F. A., A criterion for ductile fracture by growth of holes, J. Appl. Mech., 35, 363-371 (1968)
[4] Rice, J. R.; Tracey, D. M., On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, 17, 201-217 (1969)
[5] Oyane, M.; Sato, T.; Okimoto, K.; Shima, S., Criteria for ductile fracture and their applications, J. Mech. Work. Tech., 4, 65-81 (1980)
[6] Carol, I.; Bazant, Z., Damage and plasticity in microplane theory, Int. J. Solids Struct., 34, 29, 3807-3835 (1997) · Zbl 0942.74631
[7] Jirasek, M., Nonlocal models for damage and fracture: comparison of approaches, Int. J. Solids Struct., 35, 31-32, 4133-4145 (1998) · Zbl 0930.74054
[8] Steinmann, P., Formulation and computation of geometrically non-linear gradient damage, Int. J. Numer. Engrg., 46, 757-779 (1999) · Zbl 0978.74006
[9] Perlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; de Vree, J. H.P., Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Engrg., 39, 3391-3403 (1999) · Zbl 0882.73057
[10] Areias, P. M.A.; Cesar de Sa, J. M.A.; Conceição Antonio, C. A.; Fernandes, A. A., Analysis of 3D problems using a new enhanced strain hexahedral element, Int. J. Numer. Methods Engrg., 58, 1637-1682 (2003) · Zbl 1032.74661
[11] Kachanov, L. M., On the time to failure under creep conditions, Izv. Akad. Nauk SSR, Otd. Tekhn. Nauk, 8, 26-31 (1958)
[12] Odqvist, F. K.G.; Hult, J. A.H., Kriechfestigkeit Metallicher Werkstoffe (1962), Springer-Verlag: Springer-Verlag Berlin
[13] Rabotnov, Y. N., On the equation of state for creep, (Progress in Applied Mechanics—The Prager Anniversary Volume (1963), The Macmillan Company: The Macmillan Company New York, NY), 307-315 · Zbl 0167.54004
[14] Chaboche, J. L., Continuous damage mechanics—a tool to describe phenomena before crack initiation, Nucl. Engrg. Des., 64, 233-247 (1981)
[15] Lemaitre, J., A three-dimensional ductile damage model applied to deep-drawing forming limits, ICM 4 Stockholm, 2, 1047-1053 (1983)
[16] Lemaitre, J., How to use damage mechanics, Nucl. Engrg. Des., 80, 233-245 (1984)
[17] Lemaitre, J., A continuous damage mechanics model for ductile fracture, J. Engrg. Mat. Tech., Trans. ASME of American Society of Mechanical Engineers, 107, 83-89 (1985)
[18] Lemaitre, J., Coupled elasto-plasticity and damage constitutive equations, Comput. Methods Appl. Mech. Engrg., 51, 31-49 (1985) · Zbl 0546.73085
[19] Lemaitre, J., Local approach of fracture, Engrg. Fract. Mech., 25, 523-537 (1986)
[20] Lemaître, J.; Dufailly, J., Damage measurements, Engrg. Fract. Mech., 28, 5-6, 643-661 (1987)
[21] Chaboche, J. L., Continuum damage mechanics: Part I—General concepts, J. Appl. Mech., 55, 59-64 (1988)
[22] Chaboche, J. L., Continuum damage mechanics: Part II—Damage growth, crack initiation, and crack growth, J. Appl. Mech., 55, 65-72 (1988)
[23] Lemaitre, J., Micro-mechanics of crack initiation, Int. J. Fract., 42, 87-99 (1990)
[24] Lemaître, J.; Chaboche, J. L., Mechanics of Solid Materials (1990), Cambridge University Press
[25] Kachanov, M., Continuum model of medium with cracks, ASCE J. Engrg. Mech. Div., 106, EM5, 1039-1051 (1980)
[26] Kracinovic, D., Continuum damage mechanics, Appl. Mech. Rev., 37, 1 (1984)
[27] P. Ladevèze, On a anisotropic damage theory, in: J.P. Boehler (Ed.), Proceedings of CNRS International Colloquium 351—Failure criteria of structured media, Vilars-de-Lans, France, 1983, pp. 355-363.; P. Ladevèze, On a anisotropic damage theory, in: J.P. Boehler (Ed.), Proceedings of CNRS International Colloquium 351—Failure criteria of structured media, Vilars-de-Lans, France, 1983, pp. 355-363.
[28] Andrade Pires, F. M.; César de Sá, J. M.A.; Sousa, L. M.; Jorge, R. M.N., Numerical modelling of ductile plastic damage in bulk metal forming, Int. J. Mech. Sci., 45, 273-294 (2003) · Zbl 1171.74422
[29] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112 (1992) · Zbl 0764.73089
[30] Ibrahimbegovic, A.; Gharzeddine, F., Finite deformation plasticity in principal axes, Comput. Methods Appl. Mech. Engrg., 171, 341-369 (1999) · Zbl 0938.74017
[31] P.M.A. Areias, Finite element technology, damage modeling, contact constraints and fracture analysis, Ph.D. thesis, Faculty of Engineering, University of Porto, 2003.; P.M.A. Areias, Finite element technology, damage modeling, contact constraints and fracture analysis, Ph.D. thesis, Faculty of Engineering, University of Porto, 2003.
[32] Fremond, M.; Nedjar, B., Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., 33, 8, 1083-1103 (1996) · Zbl 0910.73051
[33] R.H.J. Perlings, W.A.M. Brekelmans, R. de Borst, M.G.D. Geers, Gradient-enhanced damage modelling of fatigue failure, in: ECCM’99 European Conference on Computational Mechanics, München, Germany, 1999.; R.H.J. Perlings, W.A.M. Brekelmans, R. de Borst, M.G.D. Geers, Gradient-enhanced damage modelling of fatigue failure, in: ECCM’99 European Conference on Computational Mechanics, München, Germany, 1999.
[34] Nedjar, B., Elastoplastic-damage modelling including the gradient of damage:formulation and computational aspects, Int. J. Solids Struct., 38, 5421-5451 (2001) · Zbl 1013.74061
[35] Wells, G. N.; Garikipati, K.; Molari, L., A discontinuous Galerkin formulation for a strain gradient-dependent damage model, Comput. Methods Appl. Mech. Engrg., 193, 3633-3645 (2004) · Zbl 1068.74084
[36] Bazant, Z., Nonlocal integral formulations of plasticity and damage: survey of progress, ASCE J. Engrg. Mech., 128, 11, 1119-1149 (2002)
[37] Brunet, M.; Morestin, F.; Walter, H., Damage identification for anisotropic sheet-metals using a non-local damage model, Int. J. Damage Mech., 13, 35-57 (2004)
[38] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[39] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods for 3D finite deformation problems, Int. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[40] César de Sá, J. M.A.; Areias, P. M.A.; Natal Jorge, R. M., Quadrilateral elements for the solution of elasto-plastic finite strain problems, Int. J. Numer. Methods Engrg., 51, 883-917 (2001) · Zbl 1023.74045
[41] Vaz, M.; Owen, D. R.J., Aspects of ductile fracture and adaptive mesh refinement in damaged elasto-plastic materials, Int. J. Numer. Methods Engrg., 50, 29-54 (2001) · Zbl 0977.74081
[42] R.H. Wagoner, E. Naamachi, J.K. Lee, A benchmark test for sheet metal forming analysis, Technical report, Ohio State University, 1998.; R.H. Wagoner, E. Naamachi, J.K. Lee, A benchmark test for sheet metal forming analysis, Technical report, Ohio State University, 1998.
[43] E. Oñate, C. Agelet de Saracibar, Numerical modelling of sheet metal forming, Technical Report P/2, CIMNE, 1990.; E. Oñate, C. Agelet de Saracibar, Numerical modelling of sheet metal forming, Technical Report P/2, CIMNE, 1990.
[44] C.G. Garino, J.-P. Ponthot, R. Boman, J. Oliver, A symmetric tangent operator via quasi-Coulomb model for friction contact between solids in large deformation analysis, in: European Conference on Computational Mechanics, Munchen, Germany, ECCM99, 1999.; C.G. Garino, J.-P. Ponthot, R. Boman, J. Oliver, A symmetric tangent operator via quasi-Coulomb model for friction contact between solids in large deformation analysis, in: European Conference on Computational Mechanics, Munchen, Germany, ECCM99, 1999.
[45] Peric, D.; Owen, D. R.J., Computational Model for 3-D contact problems with friction based on the penalty method, Int. J. Numer. Methods Engrg., 35, 1289-1309 (1992) · Zbl 0768.73100
[46] Rosa, P. A.C.; Baptista, R. M.O.; Rodrigues, J. M.C.; Martins, P. A.F., An investigation on the external inversion of thin-walled tubes using a die, Int. J. Plast., 20, 1931-1946 (2004) · Zbl 1066.74504
[47] Hambli, R., Numerical fracture prediction during sheet-metal blanking process, Engrg. Fract. Mech., 68, 3, 365-378 (2000)
[48] Hambli, R., Comparison between Lemaitre and Gurson damage models in crack growth simulation during blanking processes, Int. J. Mech. Sci., 43, 2769-2790 (2001) · Zbl 1082.74543
[49] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth, J. Engrg. Mater. Technol., Trans. ASME, 99, 2-15 (1977)
[50] Tvergaard, V., Mechanical modelling of ductile rupture, Mechanica, 99, S11-S16 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.