×

Generalised higher-order Kolmogorov scales. (English) Zbl 1462.76008


MSC:

76A05 Non-Newtonian fluids

Software:

2DECOMP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anselmet, F.; Gagne, Y.; Hopfinger, E., High-order velocity structure functions in turbulent shear flows, J. Fluid Mech., 140, 63, 63-89, (1984) · doi:10.1017/S0022112084000513
[2] Benzi, R.; Ciliberto, S.; Baudet, C.; Chavarria, G. R., On the scaling of three-dimensional homogeneous and isotropic turbulence, Physica D, 80, 4, 385-398, (1995) · Zbl 0899.76196 · doi:10.1016/0167-2789(94)00190-2
[3] Benzi, R.; Ciliberto, S.; Tripiccione, R.; Baudet, C.; Massaioli, F.; Succi, S., Extended self-similarity in turbulent flows, Phys. Rev. E, 48, 1, R29-R32, (1993) · doi:10.1103/PhysRevE.48.R29
[4] Betchov, R., An inequality concerning the production of vorticity in isotropic turbulence, J. Fluid Mech., 1, 5, 497-504, (1956) · Zbl 0071.40603 · doi:10.1017/S0022112056000317
[5] Boschung, J., Exact relations between the moments of dissipation and longitudinal velocity derivatives in turbulent flows, Phys. Rev. E, 92, 4, (2015) · doi:10.1103/PhysRevE.92.043013
[6] Davidson, P. A., Turbulence: An Introduction for Scientists and Engineers, (2004), Oxford University Press · Zbl 1061.76001
[7] Donzis, D.; Yeung, P.; Sreenivasan, K., Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations, Phys. Fluids, 20, 4, (2008) · Zbl 1182.76213 · doi:10.1063/1.2907227
[8] Dubrulle, B., Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance, Phys. Rev. Lett., 73, 7, 959-962, (1994) · doi:10.1103/PhysRevLett.73.959
[9] Eswaran, V.; Pope, S., Direct numerical simulations of the turbulent mixing of a passive scalar, Phys. Fluids, 31, 506-520, (1988) · doi:10.1063/1.866832
[10] Frisch, U., Turbulence: The Legacy of AN Kolmogorov, (1995), Cambridge University Press · Zbl 0832.76001
[11] Frisch, U.; Vergassola, M., A prediction of the multifractal model: the intermediate dissipation range, Europhys. Lett., 14, 439-444, (1991) · doi:10.1209/0295-5075/14/5/009
[12] Gotoh, T.; Fukayama, D.; Nakano, T., Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation, Phys. Fluids, 14, 1065, (2002) · Zbl 1185.76652 · doi:10.1063/1.1448296
[13] Hierro, J.; Dopazo, C., Fourth-order statistical moments of the velocity gradient tensor in homogeneous, isotropic turbulence, Phys. Fluids, 15, 11, 3434-3442, (2003) · Zbl 1186.76224 · doi:10.1063/1.1613648
[14] Hill, R. J., Equations relating structure functions of all orders, J. Fluid Mech., 434, 1, 379-388, (2001) · Zbl 0971.76035 · doi:10.1017/S0022112001003949
[15] Hou, T. Y.; Li, R., Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226, 1, 379-397, (2007) · Zbl 1310.76127 · doi:10.1016/j.jcp.2007.04.014
[16] Ishihara, T.; Kaneda, Y.; Yokokawa, M.; Itakura, K.; Uno, A., Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics, J. Fluid Mech., 592, 335-366, (2007) · Zbl 1151.76515 · doi:10.1017/S0022112007008531
[17] Jiménez, J.; Wray, A.; Saffman, P.; Rogallo, R., The structure of intense vorticity in isotropic turbulence, J. Fluid Mech., 255, 65-90, (1993) · Zbl 0800.76156 · doi:10.1017/S0022112093002393
[18] De Karman, T.; Howarth, L., On the statistical theory of isotropic turbulence, Proc. R. Soc. Lond. A, 164, 917, 192-215, (1938) · JFM 64.1453.03 · doi:10.1098/rspa.1938.0013
[19] Kolmogorov, A. N., Dissipation of energy in locally isotropic turbulence, Dokl. Akad. Nauk. SSSR, 32, 16-18, (1941) · Zbl 0063.03292
[20] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk. SSSR, 30, 299-303, (1941)
[21] Kolmogorov, A. N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 1, 82-85, (1962) · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[22] Landau, L. D. & Lifshitz, E. M.1959Fluid Mechanics, , vol. 6. Pergamon. · Zbl 0081.22207
[23] Li, N. & Laizet, S.20102DECOMP and FFT - a highly scalable 2D decomposition library and FFT interface. In Cray User Group 2010 Conference, pp. 1-13.
[24] Meneveau, C., Transition between viscous and inertial-range scaling of turbulence structure functions, Phys. Rev. E, 54, 4, 3657, (1996) · doi:10.1103/PhysRevE.54.3657
[25] Meneveau, C.; Sreenivasan, K., Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett., 59, 13, 1424, (1987) · doi:10.1103/PhysRevLett.59.1424
[26] Meneveau, C.; Sreenivasan, K., The multifractal nature of turbulent energy dissipation, J. Fluid Mech., 224, 429-484, 180, (1991) · Zbl 0717.76061 · doi:10.1017/S0022112091001830
[27] Obukhov, A. R., Some specific features of atmospheric turbulence, J. Fluid Mech., 13, 77-81, (1962) · Zbl 0112.42002 · doi:10.1017/S0022112062000506
[28] Paladin, G.; Vulpiani, A., Anomalous scaling laws in multifractal objects, Phys. Rep., 156, 4, 147-225, (1987) · doi:10.1016/0370-1573(87)90110-4
[29] Paladin, G.; Vulpiani, A., Degrees of freedom of turbulence, Phys. Rev. A, 35, 4, 1971, (1987) · Zbl 0708.76068 · doi:10.1103/PhysRevA.35.1971
[30] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[31] Rotta, J. C., Turbulente Strömungen, vol. 8, (1972), B. G. Teubner · doi:10.1007/978-3-322-91206-0
[32] Schumacher, J.; Scheel, J. D.; Krasnov, D.; Donzis, D. A.; Yakhot, V.; Sreenivasan, K. R., Small-scale universality in fluid turbulence, Proc. Natl Acad. Sci. USA, 111, 30, 10961-10965, (2014) · Zbl 1355.76027 · doi:10.1073/pnas.1410791111
[33] Schumacher, J.; Sreenivasan, K. R.; Yakhot, V., Asymptotic exponents from low-Reynolds-number flows, New J. Phys., 9, 4, 89, (2007) · doi:10.1088/1367-2630/9/4/089
[34] She, Z.-S.; Leveque, E., Universal scaling laws in fully developed turbulence, Phys. Rev. Lett., 72, 3, 336, (1994) · doi:10.1103/PhysRevLett.72.336
[35] She, Z.-S.; Waymire, E. C., Quantized energy cascade and log-Poisson statistics in fully developed turbulence, Phys. Rev. Lett., 74, 2, 262, (1995) · doi:10.1103/PhysRevLett.74.262
[36] Siggia, E. D., Invariants for the one-point vorticity and strain rate correlation functions, Phys. Fluids, 24, 11, 1934-1936, (1981) · Zbl 0471.76063 · doi:10.1063/1.863289
[37] Sreenivasan, K., Fractals and multifractals in fluid turbulence, Annu. Rev. Fluid Mech., 23, 1, 539-604, (1991) · doi:10.1146/annurev.fl.23.010191.002543
[38] Sreenivasan, K.; Antonia, R., The phenomenology of small-scale turbulence, Annu. Rev. Fluid Mech., 29, 1, 435-472, (1997) · doi:10.1146/annurev.fluid.29.1.435
[39] Sreenivasan, K.; Kailasnath, P., An update on the intermittency exponent in turbulence, Phys. Fluids A, 5, 2, 512-514, (1993) · doi:10.1063/1.858877
[40] Townsend, A., On the fine-scale structure of turbulence, Proc. R. Soc. Lond. A, 208, 1095, 534-542, (1951) · Zbl 0043.19201 · doi:10.1098/rspa.1951.0179
[41] Yakhot, V., Mean-field approximation and a small parameter in turbulence theory, Phys. Rev. E, 63, 2, (2001) · doi:10.1103/PhysRevE.63.026307
[42] Yakhot, V., Pressure – velocity correlations and scaling exponents in turbulence, J. Fluid Mech., 495, 135-143, (2003) · Zbl 1057.76025 · doi:10.1017/S0022112003006281
[43] Yakhot, V.; Sreenivasan, K. R., Anomalous scaling of structure functions and dynamic constraints on turbulence simulations, J. Stat. Phys., 121, 5-6, 823-841, (2005) · Zbl 1089.76029 · doi:10.1007/s10955-005-8666-6
[44] Yeung, P.; Pope, S., Lagrangian statistics from direct numerical simulations of isotropic turbulence, J. Fluid Mech., 207, 1, 531-586, (1989) · doi:10.1017/S0022112089002697
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.