Bisconti, Luca; Mariano, Paolo Maria Exact controllability of a Faedo-Galërkin scheme for the dynamics of polymer fluids. (English) Zbl 07528367 J. Optim. Theory Appl. 193, No. 1-3, 737-759 (2022). MSC: 76A05 35Q93 49J20 PDF BibTeX XML Cite \textit{L. Bisconti} and \textit{P. M. Mariano}, J. Optim. Theory Appl. 193, No. 1--3, 737--759 (2022; Zbl 07528367) Full Text: DOI OpenURL
Paoli, Laetitia Unsteady non-Newtonian fluid flow with heat transfer and Tresca’s friction boundary conditions. (English) Zbl 07525631 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 2, 38 p. (2022). MSC: 76A05 35Q35 35Q79 35K87 76M30 PDF BibTeX XML Cite \textit{L. Paoli}, Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 2, 38 p. (2022; Zbl 07525631) Full Text: DOI OpenURL
Pollock, Sara; Scott, L. Ridgway An algorithm for the grade-two rheological model. (English) Zbl 07523327 ESAIM, Math. Model. Numer. Anal. 56, No. 3, 1007-1025 (2022). MSC: 76A05 35A15 PDF BibTeX XML Cite \textit{S. Pollock} and \textit{L. R. Scott}, ESAIM, Math. Model. Numer. Anal. 56, No. 3, 1007--1025 (2022; Zbl 07523327) Full Text: DOI OpenURL
Cruz, F. W.; Novais, M. M. On the strong solutions of the 3D magneto-micropolar equations. (English) Zbl 07518217 Appl. Anal. 101, No. 6, 1963-1970 (2022). MSC: 35Q30 35Q35 76A05 76W05 35B65 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{F. W. Cruz} and \textit{M. M. Novais}, Appl. Anal. 101, No. 6, 1963--1970 (2022; Zbl 07518217) Full Text: DOI OpenURL
Malai, N. V.; Shchukin, E. R.; Efimtseva, D. N. Convective heat transfer between a moving solid spherical particle and a viscous gas. (English. Russian original) Zbl 07517586 Differ. Equ. 58, No. 2, 195-206 (2022); translation from Differ. Uravn. 58, No. 2, 192-203 (2022). MSC: 80A19 76A05 76N15 76D05 35J05 35C20 35Q79 35Q35 PDF BibTeX XML Cite \textit{N. V. Malai} et al., Differ. Equ. 58, No. 2, 195--206 (2022; Zbl 07517586); translation from Differ. Uravn. 58, No. 2, 192--203 (2022) Full Text: DOI OpenURL
Chauhan, Satyendra Singh; Tiwari, Ashish Solute dispersion in non-Newtonian fluids flow through small blood vessels: a varying viscosity approach. (English) Zbl 07516879 Eur. J. Mech., B, Fluids 94, 200-211 (2022). MSC: 76Z05 76A05 76M45 92C35 PDF BibTeX XML Cite \textit{S. S. Chauhan} and \textit{A. Tiwari}, Eur. J. Mech., B, Fluids 94, 200--211 (2022; Zbl 07516879) Full Text: DOI OpenURL
de Araujo, Anderson L. A.; Chemetov, Nikolai V. Well-posedness of the Cosserat-Bingham fluid equations. (English) Zbl 07514290 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 3, Paper No. 31, 24 p. (2022). MSC: 35Q35 76S05 76A05 PDF BibTeX XML Cite \textit{A. L. A. de Araujo} and \textit{N. V. Chemetov}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 3, Paper No. 31, 24 p. (2022; Zbl 07514290) Full Text: DOI OpenURL
Vázquez-Quesada, Adolfo; Ellero, Marco GENERIC-compliant simulations of Brownian multi-particle systems: modeling stochastic lubrication. (English) Zbl 07511991 S\(\vec{\text{e}}\)MA J. 79, No. 1, 165-185 (2022). MSC: 76A05 76M28 PDF BibTeX XML Cite \textit{A. Vázquez-Quesada} and \textit{M. Ellero}, S\(\vec{\text{e}}\)MA J. 79, No. 1, 165--185 (2022; Zbl 07511991) Full Text: DOI OpenURL
Kumar, Manoj; Sil, Sayantan; Prajapati, Mantu Exact solutions of non-Newtonian fluid of rotating MHD flows through porous media with Hall effect by complex variable technique. (English) Zbl 07510744 Gulf J. Math. 12, No. 2, 66-73 (2022). MSC: 76A05 76S05 76U05 76W05 PDF BibTeX XML Cite \textit{M. Kumar} et al., Gulf J. Math. 12, No. 2, 66--73 (2022; Zbl 07510744) Full Text: Link OpenURL
Kumar, Deepak; Sahu, Akhilesh Kumar Non-Newtonian fluid flow over a rotating elliptic cylinder in laminar flow regime. (English) Zbl 07508546 Eur. J. Mech., B, Fluids 93, 117-136 (2022). MSC: 76A05 76U05 76M12 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{A. K. Sahu}, Eur. J. Mech., B, Fluids 93, 117--136 (2022; Zbl 07508546) Full Text: DOI OpenURL
Azevedo, Joelma; Pozo, Juan Carlos; Viana, Arlúcio Global solutions to the non-local Navier-Stokes equations. (English) Zbl 07506980 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2515-2535 (2022). MSC: 35Q35 76A05 35R09 26A33 35R11 35B30 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{J. Azevedo} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2515--2535 (2022; Zbl 07506980) Full Text: DOI OpenURL
Ko, Seungchan Existence of global weak solutions for unsteady motions of incompressible chemically reacting generalized Newtonian fluids. (English) Zbl 07506394 J. Math. Anal. Appl. 513, No. 1, Article ID 126206, 24 p. (2022). MSC: 35Q35 76A05 76D03 35Q30 76D05 PDF BibTeX XML Cite \textit{S. Ko}, J. Math. Anal. Appl. 513, No. 1, Article ID 126206, 24 p. (2022; Zbl 07506394) Full Text: DOI OpenURL
Obalalu, Adebowale Martins Chemical entropy generation and second-order slip condition on hydrodynamic Casson nanofluid flow embedded in a porous medium: a fast convergent method. (English) Zbl 07503418 J. Egypt. Math. Soc. 30, Paper No. 6, 25 p. (2022). MSC: 76V05 76A05 76S05 76T20 76M99 80A19 PDF BibTeX XML Cite \textit{A. M. Obalalu}, J. Egypt. Math. Soc. 30, Paper No. 6, 25 p. (2022; Zbl 07503418) Full Text: DOI OpenURL
Lienstromberg, Christina; Pernas-Castaño, Tania; Velázquez, Juan J. L. Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid. (English) Zbl 07502700 J. Nonlinear Sci. 32, No. 2, Paper No. 24, 55 p. (2022). MSC: 76A05 76A20 35B40 35Q35 35K35 35K65 PDF BibTeX XML Cite \textit{C. Lienstromberg} et al., J. Nonlinear Sci. 32, No. 2, Paper No. 24, 55 p. (2022; Zbl 07502700) Full Text: DOI OpenURL
Yang, Jiaqi Existence and uniqueness of steady weak solutions to the non-Newtonian fluids in \(\mathbb{R}^d\). (English) Zbl 07499470 Colloq. Math. 168, No. 1, 127-140 (2022). MSC: 35Q35 76A05 PDF BibTeX XML Cite \textit{J. Yang}, Colloq. Math. 168, No. 1, 127--140 (2022; Zbl 07499470) Full Text: DOI OpenURL
Wolf, Jörg; Bae, Hyeong-Ohk Boundary regularity for the steady generalized Newtonian flow with shear thickening viscosity. (English) Zbl 07496926 J. Math. Fluid Mech. 24, No. 2, Paper No. 35, 22 p. (2022). MSC: 76D03 35D30 35B65 PDF BibTeX XML Cite \textit{J. Wolf} and \textit{H.-O. Bae}, J. Math. Fluid Mech. 24, No. 2, Paper No. 35, 22 p. (2022; Zbl 07496926) Full Text: DOI OpenURL
Panasenko, G.; Pileckas, K.; Vernescu, B. Steady state non-Newtonian flow in a thin tube structure: equation on the graph. (English) Zbl 07490999 St. Petersbg. Math. J. 33, No. 2, 327-340 (2022) and Algebra Anal. 33, No. 2, 197-214 (2021). MSC: 76A05 PDF BibTeX XML Cite \textit{G. Panasenko} et al., St. Petersbg. Math. J. 33, No. 2, 327--340 (2022; Zbl 07490999) Full Text: DOI OpenURL
Ausaru, A.; Nagarani, P. Effect of external body acceleration on solute dispersion in unsteady non-Newtonian fluid flow-the generalized dispersion model approach. (English) Zbl 07489896 Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 13, 21 p. (2022). MSC: 76A05 76Dxx 92C10 PDF BibTeX XML Cite \textit{A. Ausaru} and \textit{P. Nagarani}, Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 13, 21 p. (2022; Zbl 07489896) Full Text: DOI OpenURL
Kim, Jae-Myoung 3D Navier-Stokes equations of power law type with damping. (English) Zbl 07489075 Arch. Math. 118, No. 3, 323-335 (2022). MSC: 35Q30 76A05 76N10 35D35 35A01 PDF BibTeX XML Cite \textit{J.-M. Kim}, Arch. Math. 118, No. 3, 323--335 (2022; Zbl 07489075) Full Text: DOI OpenURL
Li, Hongmin; Xiao, Yuelong Large time behavior of solutions to the 3D micropolar equations with nonlinear damping. (English) Zbl 1482.35158 Nonlinear Anal., Real World Appl. 65, Article ID 103493, 11 p. (2022). MSC: 35Q30 35B40 35Q35 76A05 76D05 PDF BibTeX XML Cite \textit{H. Li} and \textit{Y. Xiao}, Nonlinear Anal., Real World Appl. 65, Article ID 103493, 11 p. (2022; Zbl 1482.35158) Full Text: DOI OpenURL
Peng, Yue-Jun; Zhao, Liang Global convergence to compressible full Navier-Stokes equations by approximation with Oldroyd-type constitutive laws. (English) Zbl 07488938 J. Math. Fluid Mech. 24, No. 2, Paper No. 29, 17 p. (2022). MSC: 35Qxx 35B25 35L60 35Q30 76A05 PDF BibTeX XML Cite \textit{Y.-J. Peng} and \textit{L. Zhao}, J. Math. Fluid Mech. 24, No. 2, Paper No. 29, 17 p. (2022; Zbl 07488938) Full Text: DOI OpenURL
Assenmacher, Oliver; Bruell, Gabriele; Lienstromberg, Christina Non-Newtonian two-phase thin-film problem: local existence, uniqueness, and stability. (English) Zbl 07481871 Commun. Partial Differ. Equations 47, No. 1, 197-232 (2022). MSC: 76A20 76A05 76M45 35Q35 PDF BibTeX XML Cite \textit{O. Assenmacher} et al., Commun. Partial Differ. Equations 47, No. 1, 197--232 (2022; Zbl 07481871) Full Text: DOI arXiv OpenURL
Bunoiu, Renata; Gaudiello, Antonio On the Bingham flow in a thin Y-like shaped structure. (English) Zbl 07481807 J. Math. Fluid Mech. 24, No. 1, Paper No. 20, 17 p. (2022). MSC: 76A05 76M45 35Q35 PDF BibTeX XML Cite \textit{R. Bunoiu} and \textit{A. Gaudiello}, J. Math. Fluid Mech. 24, No. 1, Paper No. 20, 17 p. (2022; Zbl 07481807) Full Text: DOI OpenURL
Béjar-López, Alexis; Cunha, Cleyton; Soler, Juan Two-dimensional incompressible micropolar fluid models with singular initial data. (English) Zbl 07479421 Physica D 430, Article ID 133069, 14 p. (2022). MSC: 35Qxx 76-XX PDF BibTeX XML Cite \textit{A. Béjar-López} et al., Physica D 430, Article ID 133069, 14 p. (2022; Zbl 07479421) Full Text: DOI OpenURL
Zhong, Xin Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. (English) Zbl 1482.35183 Commun. Pure Appl. Anal. 21, No. 2, 493-515 (2022). MSC: 35Q35 76A05 76W05 76U05 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{X. Zhong}, Commun. Pure Appl. Anal. 21, No. 2, 493--515 (2022; Zbl 1482.35183) Full Text: DOI OpenURL
Farrell, Patrick; Orozco, Pablo Alexei Gazca; Süli, Endre Finite element approximation and preconditioning for anisothermal flow of implicitly-constituted non-Newtonian fluids. (English) Zbl 07473340 Math. Comput. 91, No. 334, 659-697 (2022). MSC: 65N30 65N12 65N55 65F08 65F10 35D30 80A19 76A05 PDF BibTeX XML Cite \textit{P. Farrell} et al., Math. Comput. 91, No. 334, 659--697 (2022; Zbl 07473340) Full Text: DOI arXiv OpenURL
Gianni, Roberto; Fusi, Lorenzo; Farina, Angiolo Non stationary channel flow of a Herschel-Bulkley fluid. (English) Zbl 1483.76006 J. Math. Anal. Appl. 510, No. 1, Article ID 126002, 24 p. (2022). MSC: 76A05 35Q35 PDF BibTeX XML Cite \textit{R. Gianni} et al., J. Math. Anal. Appl. 510, No. 1, Article ID 126002, 24 p. (2022; Zbl 1483.76006) Full Text: DOI OpenURL
Krivovichev, Gerasim V. Comparison of inviscid and viscid one-dimensional models of blood flow in arteries. (English) Zbl 07465294 Appl. Math. Comput. 418, Article ID 126856, 19 p. (2022). MSC: 76Z05 35L40 65Z05 76A05 PDF BibTeX XML Cite \textit{G. V. Krivovichev}, Appl. Math. Comput. 418, Article ID 126856, 19 p. (2022; Zbl 07465294) Full Text: DOI OpenURL
Boukrouche, Mahdi; Debbiche, Hanene; Paoli, Laetitia Unsteady non-Newtonian fluid flows with boundary conditions of friction type: the case of shear thickening fluids. (English) Zbl 1481.76009 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112701, 22 p. (2022). MSC: 76A05 76M30 35Q35 PDF BibTeX XML Cite \textit{M. Boukrouche} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112701, 22 p. (2022; Zbl 1481.76009) Full Text: DOI arXiv OpenURL
Wang, Peixin; Wu, Jiahong; Xu, Xiaojing; Zhong, Yueyuan Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion. (English) Zbl 1481.35345 J. Funct. Anal. 282, No. 4, Article ID 109332, 55 p. (2022). MSC: 35Q35 35Q86 42A38 76D03 76A05 76D50 PDF BibTeX XML Cite \textit{P. Wang} et al., J. Funct. Anal. 282, No. 4, Article ID 109332, 55 p. (2022; Zbl 1481.35345) Full Text: DOI OpenURL
Zhu, Yi Global classical solutions of 3D compressible viscoelastic system near equilibrium. (English) Zbl 07451526 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 21, 22 p. (2022). MSC: 76A10 76N10 76A05 PDF BibTeX XML Cite \textit{Y. Zhu}, Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 21, 22 p. (2022; Zbl 07451526) Full Text: DOI arXiv OpenURL
Alves, Nuno J.; Tzavaras, Athanasios E. The relaxation limit of bipolar fluid models. (English) Zbl 1481.35318 Discrete Contin. Dyn. Syst. 42, No. 1, 211-237 (2022). MSC: 35Q35 35Q20 35L65 35K55 76A05 76W05 35B65 35D30 35D35 82D37 PDF BibTeX XML Cite \textit{N. J. Alves} and \textit{A. E. Tzavaras}, Discrete Contin. Dyn. Syst. 42, No. 1, 211--237 (2022; Zbl 1481.35318) Full Text: DOI arXiv OpenURL
Luo, Wei; Yin, Zhaoyang Global existence and well-posedness for the Doi-Edwards polymer model. (English) Zbl 1480.35332 J. Differ. Equations 309, 142-175 (2022). MSC: 35Q35 35A01 35B45 76A05 76A10 42B25 35K65 35Q84 PDF BibTeX XML Cite \textit{W. Luo} and \textit{Z. Yin}, J. Differ. Equations 309, 142--175 (2022; Zbl 1480.35332) Full Text: DOI arXiv OpenURL
Topayev, S.; Nouar, C.; Dusek, J. Secondary instabilities in Taylor-Couette flow of shear-thinning fluids. (English) Zbl 1479.76038 J. Fluid Mech. 933, Paper No. A4, 32 p. (2022). MSC: 76E07 76E30 76D05 76A05 76M10 76-05 PDF BibTeX XML Cite \textit{S. Topayev} et al., J. Fluid Mech. 933, Paper No. A4, 32 p. (2022; Zbl 1479.76038) Full Text: DOI OpenURL
Woźnicki, Jakub Weak-strong uniqueness for a class of generalized dissipative weak solutions for non-homogeneous, non-Newtonian and incompressible fluids. (English) Zbl 07446140 Nonlinear Anal., Real World Appl. 64, Article ID 103426, 16 p. (2022). MSC: 35Qxx 35Lxx 76Nxx PDF BibTeX XML Cite \textit{J. Woźnicki}, Nonlinear Anal., Real World Appl. 64, Article ID 103426, 16 p. (2022; Zbl 07446140) Full Text: DOI OpenURL
Heid, Pascal; Süli, Endre On the convergence rate of the Kačanov scheme for shear-thinning fluids. (English) Zbl 1483.65186 Calcolo 59, No. 1, Paper No. 4, 27 p. (2022). MSC: 65N30 65N12 35Q35 35J62 76A05 PDF BibTeX XML Cite \textit{P. Heid} and \textit{E. Süli}, Calcolo 59, No. 1, Paper No. 4, 27 p. (2022; Zbl 1483.65186) Full Text: DOI arXiv OpenURL
Qian, Chenyin; Qu, Yue Global well-posedness for 3D incompressible inhomogeneous asymmetric fluids with density-dependent viscosity. (English) Zbl 1477.35133 J. Differ. Equations 306, 333-402 (2022). MSC: 35Q30 76D03 76D05 76A05 35B45 35A01 35A02 46E35 42B25 PDF BibTeX XML Cite \textit{C. Qian} and \textit{Y. Qu}, J. Differ. Equations 306, 333--402 (2022; Zbl 1477.35133) Full Text: DOI OpenURL
Abdelwahed, Mohamed; Berselli, Luigi C.; Chorfi, Nejmeddine On the uniqueness for weak solutions of steady double-phase fluids. (English) Zbl 07405806 Adv. Nonlinear Anal. 11, 454-468 (2022). MSC: 76A05 76T06 35Q35 PDF BibTeX XML Cite \textit{M. Abdelwahed} et al., Adv. Nonlinear Anal. 11, 454--468 (2022; Zbl 07405806) Full Text: DOI OpenURL
Sharma, Bhuvnesh; Kumar, Sunil; Cattani, Carlo Laminar convection of power-law fluids in differentially heated closed region: CFD analysis. (English) Zbl 1481.76199 Singh, Jagdev (ed.) et al., Methods of mathematical modelling and computation for complex systems. Cham: Springer. Stud. Syst. Decis. Control 373, 45-63 (2022). Reviewer: Ioan Pop (Cluj-Napoca) MSC: 76R10 76A05 76M20 80A19 PDF BibTeX XML Cite \textit{B. Sharma} et al., Stud. Syst. Decis. Control 373, 45--63 (2022; Zbl 1481.76199) Full Text: DOI OpenURL
Pundir, Sudhir Kumar; Nadian, Pulkit Kumar; Pundir, Rimple Hall current effect on double diffusive convection of couple-stress ferromagnetic fluid in the presence of varying gravitational field and horizontal magnetic field through a porous media. (English) Zbl 07528096 South East Asian J. Math. Math. Sci. 17, No. 3, 415-438 (2021). MSC: 76A05 76A10 76D05 76E25 76M25 76W05 PDF BibTeX XML Cite \textit{S. K. Pundir} et al., South East Asian J. Math. Math. Sci. 17, No. 3, 415--438 (2021; Zbl 07528096) Full Text: Link OpenURL
Khan, Arif Ullah; Al-Zubaidi, A.; Munir, Shahid; Saleem, S.; Duraihem, Faisal Z. Closed form solutions of cross flows of Casson fluid over a stretching surface. (English) Zbl 07526974 Chaos Solitons Fractals 149, Article ID 111067, 5 p. (2021). MSC: 76A05 76D07 35C05 PDF BibTeX XML Cite \textit{A. U. Khan} et al., Chaos Solitons Fractals 149, Article ID 111067, 5 p. (2021; Zbl 07526974) Full Text: DOI OpenURL
Saleem, Musharafa; Chaudhry, Qasim Ali; Almatroud, A. Othman One-parameter Lie scaling study of Carreau fluid flow with thermal radiation effects. (English) Zbl 07526916 Chaos Solitons Fractals 148, Article ID 110996, 7 p. (2021). MSC: 76A05 35Q35 PDF BibTeX XML Cite \textit{M. Saleem} et al., Chaos Solitons Fractals 148, Article ID 110996, 7 p. (2021; Zbl 07526916) Full Text: DOI OpenURL
Zheng, Famei Periodic wave solutions of a non-Newtonian filtration equation with an indefinite singularity. (English) Zbl 07514444 AIMS Math. 6, No. 2, 1209-1222 (2021). MSC: 76A05 35Q35 76S05 PDF BibTeX XML Cite \textit{F. Zheng}, AIMS Math. 6, No. 2, 1209--1222 (2021; Zbl 07514444) Full Text: DOI OpenURL
Hageman, Tim; de Borst, René A refined two-scale model for newtonian and non-Newtonian fluids in fractured poroelastic media. (English) Zbl 07513814 J. Comput. Phys. 441, Article ID 110424, 19 p. (2021). MSC: 76Sxx 74Fxx 74Rxx PDF BibTeX XML Cite \textit{T. Hageman} and \textit{R. de Borst}, J. Comput. Phys. 441, Article ID 110424, 19 p. (2021; Zbl 07513814) Full Text: DOI OpenURL
Wang, Wen; Long, Yunchong A note on global existence of strong solution to the 3D micropolar equations with a damping term. (English) Zbl 07509916 Bound. Value Probl. 2021, Paper No. 72, 6 p. (2021). MSC: 35Q35 76A05 76D03 76D05 76U05 35B65 35D35 35D30 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Y. Long}, Bound. Value Probl. 2021, Paper No. 72, 6 p. (2021; Zbl 07509916) Full Text: DOI OpenURL
Akolade, M. T.; Idowu, A. S.; Falodun, B. O.; Abubakar, J. U. The paradox of heat conduction, influence of variable viscosity, and thermal conductivity on magnetized dissipative Casson fluid with stratification models. (English) Zbl 07493308 Proyecciones 40, No. 6, 1657-1682 (2021). MSC: 80A19 76A05 76W05 76D50 35A15 65L60 41A50 35A15 35Q79 35Q35 PDF BibTeX XML Cite \textit{M. T. Akolade} et al., Proyecciones 40, No. 6, 1657--1682 (2021; Zbl 07493308) Full Text: DOI OpenURL
Renu, Km.; Kumar, Ashok; Negi, Anup Singh Chebyshev spectral collocation method for magneto micro-polar convective flow through vertical porous pipe using local thermal non-equilibrium approach. (English) Zbl 07490128 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 117, 21 p. (2021). MSC: 76W05 76S05 76A05 76R10 76R05 76M22 80A19 PDF BibTeX XML Cite \textit{Km. Renu} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 117, 21 p. (2021; Zbl 07490128) Full Text: DOI OpenURL
Ahmed, Arsalan; Poonam, K. K.; Khalil, Munam; Ali, Arshad Numerical scruitinization of unsteady 3D flow of Jeffrey nanofluid with MHD in a porous medium. (English) Zbl 07490037 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 106, 18 p. (2021). MSC: 76A05 76A10 PDF BibTeX XML Cite \textit{A. Ahmed} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 106, 18 p. (2021; Zbl 07490037) Full Text: DOI OpenURL
Chinyoka, Tiri Comparative response of Newtonian and non-Newtonian fluids subjected to exothermic reactions in shear flow. (English) Zbl 07490006 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 75, 19 p. (2021). MSC: 35Q35 76M20 PDF BibTeX XML Cite \textit{T. Chinyoka}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 75, 19 p. (2021; Zbl 07490006) Full Text: DOI OpenURL
Punith Gowda, R. J.; Jyothi, A. M.; Naveen Kumar, R.; Prasannakumara, B. C.; Sarris, I. E. Convective flow of second grade fluid over a curved stretching sheet with Dufour and Soret effects. (English) Zbl 07489849 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 226, 16 p. (2021). MSC: 76A05 76W05 76M20 80A19 PDF BibTeX XML Cite \textit{R. J. Punith Gowda} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 226, 16 p. (2021; Zbl 07489849) Full Text: DOI OpenURL
Rani, A.; Singh, P.; Mala, Mani Flow and heat transfer of a non-Newtonian power-law fluid over a non-linearly stretching sheet with thermal radiation and aligned magnetic field. (English) Zbl 07488853 Nonlinear Dyn. Syst. Theory 21, No. 3, 315-325 (2021). MSC: 76A05 85A30 PDF BibTeX XML Cite \textit{A. Rani} et al., Nonlinear Dyn. Syst. Theory 21, No. 3, 315--325 (2021; Zbl 07488853) Full Text: Link OpenURL
Dhlamini, Mlamuli; Mondal, Hiranmoy; Sibanda, Precious; Motsa, Sandile Numerical analysis of couple stress nanofluid in temperature dependent viscosity and thermal conductivity. (English) Zbl 07486486 Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 48, 14 p. (2021). MSC: 76A05 PDF BibTeX XML Cite \textit{M. Dhlamini} et al., Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 48, 14 p. (2021; Zbl 07486486) Full Text: DOI OpenURL
Muthuraj, R. An analysis of Bingham fluid and Jeffrey fluid flow in a horizontal channel with plug flow and heat transfer. (English) Zbl 07486473 Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 35, 11 p. (2021). MSC: 80A19 76A05 76W05 76S05 35Q79 35Q35 PDF BibTeX XML Cite \textit{R. Muthuraj}, Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 35, 11 p. (2021; Zbl 07486473) Full Text: DOI OpenURL
Ponalagusamy, R.; Manchi, Ramakrishna Biorheological model on pulsatile flow of blood (K-L fluid) through flexible stenotic tapered blood vessels. (English) Zbl 07486451 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 13, 28 p. (2021). MSC: 76Z05 76A05 74F10 74L15 92C10 PDF BibTeX XML Cite \textit{R. Ponalagusamy} and \textit{R. Manchi}, Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 13, 28 p. (2021; Zbl 07486451) Full Text: DOI OpenURL
Mogilevskii, E. I. Non-Newtonian fluid film flowing down an inclined plane with a periodic topography. (English. Russian original) Zbl 1483.76009 Fluid Dyn. 56, No. 6, 786-798 (2021); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2021, No. 6, 25-37 (2021). MSC: 76A20 76A05 76D45 76E17 PDF BibTeX XML Cite \textit{E. I. Mogilevskii}, Fluid Dyn. 56, No. 6, 786--798 (2021; Zbl 1483.76009); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2021, No. 6, 25--37 (2021) Full Text: DOI OpenURL
Mahanthesh, B.; Joseph, T. V.; Thriveni, K. Dynamics of non-Newtonian nanoliquid with quadratic thermal convection. (English) Zbl 1483.76053 Mahanthesh, B. (ed.), Mathematical fluid mechanics. Advances in convective instabilities and incompressible fluid flow. Berlin: De Gruyter. De Gruyter Ser. Appl. Math. Eng. Inf. Sci. 7, 223-247 (2021). MSC: 76R10 76A05 76T20 76W05 76M20 80A19 80A21 PDF BibTeX XML Cite \textit{B. Mahanthesh} et al., De Gruyter Ser. Appl. Math. Eng. Inf. Sci. 7, 223--247 (2021; Zbl 1483.76053) Full Text: DOI OpenURL
Meghana, J.; Pranesh, S. Two-component convection in micropolar fluid under time-dependent boundary concentration. (English) Zbl 1483.76054 Mahanthesh, B. (ed.), Mathematical fluid mechanics. Advances in convective instabilities and incompressible fluid flow. Berlin: De Gruyter. De Gruyter Ser. Appl. Math. Eng. Inf. Sci. 7, 163-200 (2021). MSC: 76R10 76R50 76A05 76M45 80A19 PDF BibTeX XML Cite \textit{J. Meghana} and \textit{S. Pranesh}, De Gruyter Ser. Appl. Math. Eng. Inf. Sci. 7, 163--200 (2021; Zbl 1483.76054) Full Text: DOI OpenURL
Surabhi, K. M.; Ravikanti, Arpitha; Srikanth, D.; Srinivasacharya, D. Couple stress nanofluid flow through a bifurcated artery – application of catheterization process. (English) Zbl 07478772 Appl. Math., Ser. B (Engl. Ed.) 36, No. 4, 492-511 (2021). MSC: 35Q35 35Q30 76A05 76Z05 PDF BibTeX XML Cite \textit{K. M. Surabhi} et al., Appl. Math., Ser. B (Engl. Ed.) 36, No. 4, 492--511 (2021; Zbl 07478772) Full Text: DOI OpenURL
Gazca-Orozco, Pablo Alexei A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow. (English) Zbl 1483.65182 ESAIM, Math. Model. Numer. Anal. 55, No. 6, 2679-2703 (2021). MSC: 65N30 65N22 76A05 PDF BibTeX XML Cite \textit{P. A. Gazca-Orozco}, ESAIM, Math. Model. Numer. Anal. 55, No. 6, 2679--2703 (2021; Zbl 1483.65182) Full Text: DOI arXiv OpenURL
Botti, Michele; Quiroz, Daniel Castanon; Di Pietro, Daniele A.; Harnist, André A hybrid high-order method for creeping flows of non-Newtonian fluids. (English) Zbl 07477237 ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2045-2073 (2021). MSC: 65N08 65N30 65N12 76A05 35Q30 PDF BibTeX XML Cite \textit{M. Botti} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2045--2073 (2021; Zbl 07477237) Full Text: DOI arXiv OpenURL
Panasenko, Grigory; Pileckas, Konstantin; Vernescu, Bogdan Steady state non-Newtonian flow with strain rate dependent viscosity in domains with cylindrical outlets to infinity. (English) Zbl 07473974 Nonlinear Anal., Model. Control 26, No. 6, 1166-1199 (2021). MSC: 35Qxx 76Dxx 76Axx PDF BibTeX XML Cite \textit{G. Panasenko} et al., Nonlinear Anal., Model. Control 26, No. 6, 1166--1199 (2021; Zbl 07473974) Full Text: DOI OpenURL
Mahdy, A.; Ahmed, S. E.; Mansour, M. A. Entropy generation for MHD natural convection in enclosure with a micropolar fluid saturated porous medium with Al\(_2\)O\(_3\)Cu water hybrid nanofluid. (English) Zbl 1482.80004 Nonlinear Anal., Model. Control 26, No. 6, 1123-1143 (2021). MSC: 80A19 76R10 76W05 76S05 76U05 76T20 76A05 76M20 80M20 65N06 PDF BibTeX XML Cite \textit{A. Mahdy} et al., Nonlinear Anal., Model. Control 26, No. 6, 1123--1143 (2021; Zbl 1482.80004) Full Text: DOI OpenURL
Yuan, Baoquan; Zhang, Panpan Global well-posedness for the 3D magneto-micropolar equations with fractional dissipation. (English) Zbl 1482.35181 N. Z. J. Math. 51, 119-130 (2021). MSC: 35Q35 76W05 35B65 76A05 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{B. Yuan} and \textit{P. Zhang}, N. Z. J. Math. 51, 119--130 (2021; Zbl 1482.35181) Full Text: DOI OpenURL
Li, Xuejuan; Wang, Dan Effects of a cavity’s fractal boundary on the free front interface of the polymer filling stage. (English) Zbl 1482.76126 Fractals 29, No. 7, Article ID 2150225, 6 p. (2021). MSC: 76T10 76A05 76M10 28A80 PDF BibTeX XML Cite \textit{X. Li} and \textit{D. Wang}, Fractals 29, No. 7, Article ID 2150225, 6 p. (2021; Zbl 1482.76126) Full Text: DOI OpenURL
Kou, Lei; Miao, Ronghu; Miao, Fengyang Fractal analysis of non-Newton fluid grouting in soil composed of arbitrary cross-sectional capillaries. (English) Zbl 1482.76115 Fractals 29, No. 6, Article ID 2150139, 10 p. (2021). MSC: 76S05 76A05 28A80 86A05 PDF BibTeX XML Cite \textit{L. Kou} et al., Fractals 29, No. 6, Article ID 2150139, 10 p. (2021; Zbl 1482.76115) Full Text: DOI OpenURL
Suzuki, Yukihito; Ohnawa, Masashi; Mori, Naofumi; Kawashima, Shuichi Thermodynamically consistent modeling for complex fluids and mathematical analysis. (English) Zbl 07466891 Math. Models Methods Appl. Sci. 31, No. 10, 1919-1949 (2021). MSC: 35Qxx 35B35 35L60 76A05 PDF BibTeX XML Cite \textit{Y. Suzuki} et al., Math. Models Methods Appl. Sci. 31, No. 10, 1919--1949 (2021; Zbl 07466891) Full Text: DOI OpenURL
Abbatiello, Anna; Bulíček, Miroslav; Maringová, Erika On the dynamic slip boundary condition for Navier-Stokes-like problems. (English) Zbl 1478.35172 Math. Models Methods Appl. Sci. 31, No. 11, 2165-2212 (2021). MSC: 35Q35 76A05 76D03 PDF BibTeX XML Cite \textit{A. Abbatiello} et al., Math. Models Methods Appl. Sci. 31, No. 11, 2165--2212 (2021; Zbl 1478.35172) Full Text: DOI arXiv OpenURL
Sin, Cholmin The existence of strong solution for generalized Navier-Stokes equations with \(p(x)\)-power law under Dirichlet boundary conditions. (English) Zbl 1481.35313 Adv. Math. Phys. 2021, Article ID 6755411, 11 p. (2021). MSC: 35Q30 35D35 76A05 76W05 76V05 PDF BibTeX XML Cite \textit{C. Sin}, Adv. Math. Phys. 2021, Article ID 6755411, 11 p. (2021; Zbl 1481.35313) Full Text: DOI OpenURL
Song, Zihao The Gevrey analyticity and decay for the micropolar system in the critical Besov space. (English) Zbl 1482.35013 J. Evol. Equ. 21, No. 4, 4751-4771 (2021). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 35A20 35K45 35Q35 39A14 42B25 46N20 76A05 PDF BibTeX XML Cite \textit{Z. Song}, J. Evol. Equ. 21, No. 4, 4751--4771 (2021; Zbl 1482.35013) Full Text: DOI OpenURL
Mukhopadhyay, Subrata; Mandal, Mani Shankar; Mukhopadhyay, Swati Heat transfer in pulsatile blood flow obeying Cross viscosity model through an artery with aneurysm. (English) Zbl 1480.76170 J. Eng. Math. 131, Paper No. 6, 16 p. (2021). MSC: 76Z05 76A05 76M20 80A19 92C35 PDF BibTeX XML Cite \textit{S. Mukhopadhyay} et al., J. Eng. Math. 131, Paper No. 6, 16 p. (2021; Zbl 1480.76170) Full Text: DOI OpenURL
Freitas, M. M.; Araújo, G. M.; Bezerra, F. D. M.; Araújo, M. A. F. Existence and upper semicontinuity of attractors for a class of non-Newtonian micropolar fluids. (English) Zbl 1480.35036 SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 63, 24 p. (2021). MSC: 35B40 35B41 35Q30 76D03 PDF BibTeX XML Cite \textit{M. M. Freitas} et al., SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 63, 24 p. (2021; Zbl 1480.35036) Full Text: DOI OpenURL
Liu, Xin; Lu, Yongjin; Yang, Xin-Guang Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. (English) Zbl 1476.35176 Evol. Equ. Control Theory 10, No. 2, 365-384 (2021). MSC: 35Q30 35B40 35B41 76D03 76D05 PDF BibTeX XML Cite \textit{X. Liu} et al., Evol. Equ. Control Theory 10, No. 2, 365--384 (2021; Zbl 1476.35176) Full Text: DOI OpenURL
Bulat, A. F.; Yelisieiev, V. I.; Semenenko, Ye. V.; Stadnychuk, N. N.; Blyuss, B. A. Non-Newtonian fluid flow in an extrusion apparatus for three-dimensional printing. (Ukrainian. English summary) Zbl 07450248 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 5, 25-32 (2021). MSC: 76S05 76A05 PDF BibTeX XML Cite \textit{A. F. Bulat} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 5, 25--32 (2021; Zbl 07450248) Full Text: DOI OpenURL
Wang, Changjia; Shi, Shaoli Existence of weak solutions for a class of anisotropic non-Newtonian micropolar fluid equations. (Chinese. English summary) Zbl 07448463 J. Jilin Univ., Sci. 59, No. 4, 837-845 (2021). MSC: 35D30 35Q35 76A05 76N10 PDF BibTeX XML Cite \textit{C. Wang} and \textit{S. Shi}, J. Jilin Univ., Sci. 59, No. 4, 837--845 (2021; Zbl 07448463) Full Text: DOI OpenURL
Mushtaq, T.; Rauf, A.; Shehzad, S. A.; Mustafa, F.; Hanif, M.; Abbas, Z. Numerical and statistical approach for Casson-Maxwell nanofluid flow with Cattaneo-Christov theory. (English) Zbl 1479.76003 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 7, 1063-1076 (2021). MSC: 76A05 76S05 76M35 80A19 PDF BibTeX XML Cite \textit{T. Mushtaq} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 7, 1063--1076 (2021; Zbl 1479.76003) Full Text: DOI OpenURL
Siva, T.; Jangili, S.; Kumbhakar, B. Heat transfer analysis of MHD and electroosmotic flow of non-Newtonian fluid in a rotating microfluidic channel: an exact solution. (English) Zbl 1479.76119 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 7, 1047-1062 (2021). MSC: 76W05 76A05 76U05 80A19 PDF BibTeX XML Cite \textit{T. Siva} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 7, 1047--1062 (2021; Zbl 1479.76119) Full Text: DOI OpenURL
Su, Jie; Song, Hongxia; Ke, Liaoliang; Aizikovich, S. M. The size-dependent elastohydrodynamic lubrication contact of a coated half-plane with non-Newtonian fluid. (English) Zbl 1479.76027 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 7, 915-930 (2021). MSC: 76D08 76A05 74F10 74M15 PDF BibTeX XML Cite \textit{J. Su} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 7, 915--930 (2021; Zbl 1479.76027) Full Text: DOI OpenURL
Bashaga, G.; Shaw, S. Shear-augmented solute dispersion during drug delivery for three-layer flow through microvessel under stress jump and momentum slip-Darcy model. (English) Zbl 1479.76122 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 6, 901-914 (2021). MSC: 76Z05 76A05 76S05 92C35 PDF BibTeX XML Cite \textit{G. Bashaga} and \textit{S. Shaw}, AMM, Appl. Math. Mech., Engl. Ed. 42, No. 6, 901--914 (2021; Zbl 1479.76122) Full Text: DOI OpenURL
Jin, Bumja; Kwon, Young-Sam; Nečasová, Šárka; Novotný, Antonín Existence and stability of dissipative turbulent solutions to a simple bi-fluid model of compressible fluids. (English) Zbl 1479.35670 J. Elliptic Parabol. Equ. 7, No. 2, 537-570 (2021). MSC: 35Q35 35D35 35A01 35A02 76N10 76A05 76F99 76T06 PDF BibTeX XML Cite \textit{B. Jin} et al., J. Elliptic Parabol. Equ. 7, No. 2, 537--570 (2021; Zbl 1479.35670) Full Text: DOI arXiv OpenURL
Al Baba, Hind; Ghosh, Amrita; Muha, Boris; Nečasová, Šárka \(L^p\)-strong solution to fluid-rigid body interaction system with Navier slip boundary condition. (English) Zbl 1479.35645 J. Elliptic Parabol. Equ. 7, No. 2, 439-489 (2021). MSC: 35Q35 74F10 76A05 76D05 76D10 35A01 35D35 35B65 PDF BibTeX XML Cite \textit{H. Al Baba} et al., J. Elliptic Parabol. Equ. 7, No. 2, 439--489 (2021; Zbl 1479.35645) Full Text: DOI arXiv OpenURL
Tolksdorf, Patrick On off-diagonal decay properties of the generalized Stokes semigroup with bounded measurable coefficients. (English) Zbl 07446435 J. Elliptic Parabol. Equ. 7, No. 2, 323-340 (2021). MSC: 47B12 47B90 47F10 76M30 76A05 PDF BibTeX XML Cite \textit{P. Tolksdorf}, J. Elliptic Parabol. Equ. 7, No. 2, 323--340 (2021; Zbl 07446435) Full Text: DOI arXiv OpenURL
Nazeer, M.; Khan, M. I.; Kadry, S.; Chu, Yuming; Ahmad, F.; Ali, W.; Irfan, M.; Shaheen, M. Regular perturbation solution of Couette flow (non-Newtonian) between two parallel porous plates: a numerical analysis with irreversibility. (English) Zbl 1479.76004 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 1, 127-142 (2021). MSC: 76A05 76S05 76M45 80A17 80A19 PDF BibTeX XML Cite \textit{M. Nazeer} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 1, 127--142 (2021; Zbl 1479.76004) Full Text: DOI OpenURL
Abo-zaid, Omima A.; Mohamed, R. A.; Hady, F. M.; Mahdy, A. MHD Powell-Eyring dusty nanofluid flow due to stretching surface with heat flux boundary condition. (English) Zbl 07443739 J. Egypt. Math. Soc. 29, Paper No. 14, 14 p. (2021). MSC: 76A05 76D05 76D10 76W05 PDF BibTeX XML Cite \textit{O. A. Abo-zaid} et al., J. Egypt. Math. Soc. 29, Paper No. 14, 14 p. (2021; Zbl 07443739) Full Text: DOI OpenURL
Chen, Tuowei; Zhang, Yongqian Free boundary problem for one-dimensional compressible Navier-Stokes equations with temperature-dependent viscosity and heat conductivity. (English) Zbl 1479.35603 Math. Methods Appl. Sci. 44, No. 17, 13273-13286 (2021). MSC: 35Q30 76N10 76N15 76A05 35B40 35D35 35L65 35A01 35A02 35R35 PDF BibTeX XML Cite \textit{T. Chen} and \textit{Y. Zhang}, Math. Methods Appl. Sci. 44, No. 17, 13273--13286 (2021; Zbl 1479.35603) Full Text: DOI OpenURL
Emmrich, Etienne; Geuter, Lukas Analysis of a model for the dynamics of microswimmer suspensions. (English) Zbl 1481.35325 Math. Methods Appl. Sci. 44, No. 18, 14041-14058 (2021). MSC: 35Q35 76A05 76T20 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{E. Emmrich} and \textit{L. Geuter}, Math. Methods Appl. Sci. 44, No. 18, 14041--14058 (2021; Zbl 1481.35325) Full Text: DOI arXiv OpenURL
González-Andrade, Sergio; López-Ordóñez, Sofía; Merino, Pedro Nonsmooth exact penalization second-order methods for incompressible bi-viscous fluids. (English) Zbl 1483.49021 Comput. Optim. Appl. 80, No. 3, 979-1025 (2021). Reviewer: Radu Ioan Bot (Wien) MSC: 49J52 65K10 76A05 76M10 PDF BibTeX XML Cite \textit{S. González-Andrade} et al., Comput. Optim. Appl. 80, No. 3, 979--1025 (2021; Zbl 1483.49021) Full Text: DOI arXiv OpenURL
Rasool, Ghulam; Shafiq, Anum; Khalique, Chaudry Masood Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. (English) Zbl 07440427 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2517-2533 (2021). MSC: 76R05 76D45 76A05 76T20 76W05 76M99 80A19 PDF BibTeX XML Cite \textit{G. Rasool} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2517--2533 (2021; Zbl 07440427) Full Text: DOI OpenURL
Rasool, Ghulam; Shafiq, Anum; Durur, Hülya Darcy-Forchheimer relation in magnetohydrodynamic Jeffrey nanofluid flow over stretching surface. (English) Zbl 07440426 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2497-2515 (2021). MSC: 76S05 76W05 76A05 76T20 76M99 80A19 PDF BibTeX XML Cite \textit{G. Rasool} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2497--2515 (2021; Zbl 07440426) Full Text: DOI OpenURL
Mehdaoui, Hamza; Abderrahmane, Hamid Ait; Bouda, Faïçal Nait; Koulali, Aimad; Hamani, Sofiane 2D numerical simulation of tear film dynamics: effects of shear-thinning properties. (English) Zbl 07440257 Eur. J. Mech., B, Fluids 90, 128-136 (2021). MSC: 76A20 76A05 76M99 PDF BibTeX XML Cite \textit{H. Mehdaoui} et al., Eur. J. Mech., B, Fluids 90, 128--136 (2021; Zbl 07440257) Full Text: DOI OpenURL
Zhong, Xin Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. (English) Zbl 1479.35706 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6339-6357 (2021). MSC: 35Q35 35B65 35B44 35D35 35A01 76W05 76A05 76U05 PDF BibTeX XML Cite \textit{X. Zhong}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6339--6357 (2021; Zbl 1479.35706) Full Text: DOI OpenURL
Tang, Tong; Sun, Jianzhu Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. (English) Zbl 1479.35695 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6017-6026 (2021). MSC: 35Q35 35B40 76W05 76A05 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{T. Tang} and \textit{J. Sun}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6017--6026 (2021; Zbl 1479.35695) Full Text: DOI OpenURL
Hegde, Amit Sanjay; Harikrishnan, A. R. Slip hydrodynamics of combined electroosmotic and pressure driven flows of power law fluids through narrow confinements. (English) Zbl 1478.76076 Eur. J. Mech., B, Fluids 89, 525-550 (2021). MSC: 76W05 76A05 76M10 PDF BibTeX XML Cite \textit{A. S. Hegde} and \textit{A. R. Harikrishnan}, Eur. J. Mech., B, Fluids 89, 525--550 (2021; Zbl 1478.76076) Full Text: DOI OpenURL
He, Ji-Huan; Mostapha, Doaa R. Insight into the significance of Hall current and Joule heating on the dynamics of Darcy-Forchheimer peristaltic flow of Rabinowitsch fluid. (English) Zbl 1477.76108 J. Math. 2021, Article ID 3638807, 18 p. (2021). MSC: 76W05 92C35 76A05 PDF BibTeX XML Cite \textit{J.-H. He} and \textit{D. R. Mostapha}, J. Math. 2021, Article ID 3638807, 18 p. (2021; Zbl 1477.76108) Full Text: DOI OpenURL
Blumers, Ansel L.; Yin, Minglang; Nakajima, Hiroyuki; Hasegawa, Yosuke; Li, Zhen; Karniadakis, George Em Multiscale parareal algorithm for long-time mesoscopic simulations of microvascular blood flow in zebrafish. (English) Zbl 1479.76123 Comput. Mech. 68, No. 5, 1131-1152 (2021). MSC: 76Z05 76D05 76A05 76M28 92C35 PDF BibTeX XML Cite \textit{A. L. Blumers} et al., Comput. Mech. 68, No. 5, 1131--1152 (2021; Zbl 1479.76123) Full Text: DOI arXiv OpenURL
Mathur, Priya; Mishra, S. R.; Bohra, Mahesh; Suthar, D. L.; Purohit, S. D. Computational behavior of second law Poiseuille flow of micropolar fluids in a channel: analytical treatment. (English) Zbl 1477.76007 J. Math. 2021, Article ID 9945319, 13 p. (2021). MSC: 76A05 PDF BibTeX XML Cite \textit{P. Mathur} et al., J. Math. 2021, Article ID 9945319, 13 p. (2021; Zbl 1477.76007) Full Text: DOI OpenURL
Kim, Jae-Myoung The Cauchy problem for the incompressible 2D-MHD with power law-type nonlinear viscous fluid. (English) Zbl 1481.35332 Adv. Math. Phys. 2021, Article ID 6675729, 7 p. (2021). MSC: 35Q35 76A05 76W05 PDF BibTeX XML Cite \textit{J.-M. Kim}, Adv. Math. Phys. 2021, Article ID 6675729, 7 p. (2021; Zbl 1481.35332) Full Text: DOI OpenURL
Mehryan, S. A. M.; Ghalambaz, Mohammad; Vaezi, Mohammad; Hashem Zadeh, Seyed Mohsen; Sedaghatizadeh, Nima; Younis, Obai; Chamkha, Ali J.; Abulkhair, Hani Non-Newtonian phase change study of nano-enhanced n-octadecane comprising mesoporous silica in a porous medium. (English) Zbl 1481.76012 Appl. Math. Modelling 97, 463-482 (2021). MSC: 76A05 76S05 PDF BibTeX XML Cite \textit{S. A. M. Mehryan} et al., Appl. Math. Modelling 97, 463--482 (2021; Zbl 1481.76012) Full Text: DOI OpenURL
Nuca, Roberto; Lo Giudice, Andrea; Preziosi, Luigi Degenerate parabolic models for sand slides. (English) Zbl 1481.76260 Appl. Math. Modelling 89, Part 2, 1627-1639 (2021). MSC: 76T25 35K59 PDF BibTeX XML Cite \textit{R. Nuca} et al., Appl. Math. Modelling 89, Part 2, 1627--1639 (2021; Zbl 1481.76260) Full Text: DOI OpenURL
Yu, Wenjie; Shen, Guancheng; Zhang, Yun; Li, Dequn; Zhou, Huamin Molecular configuration evolution model and simulation for polymer melts using a non-equilibrium irreversible thermodynamics method. (English) Zbl 1481.76016 Appl. Math. Modelling 89, Part 2, 1357-1372 (2021). MSC: 76A05 82C35 PDF BibTeX XML Cite \textit{W. Yu} et al., Appl. Math. Modelling 89, Part 2, 1357--1372 (2021; Zbl 1481.76016) Full Text: DOI OpenURL
Kutev, N.; Tabakova, S.; Radev, St. Unsteady flow of Carreau fluid in a pipe. (English) Zbl 07425517 Z. Angew. Math. Phys. 72, No. 6, Paper No. 196, 14 p. (2021). MSC: 76A05 76M55 35K61 PDF BibTeX XML Cite \textit{N. Kutev} et al., Z. Angew. Math. Phys. 72, No. 6, Paper No. 196, 14 p. (2021; Zbl 07425517) Full Text: DOI OpenURL