Vidal Martins, Renato; Lara, Danielle; Menezes Souza, Jairo On gonality, scrolls, and canonical models of non-Gorenstein curves. (English) Zbl 1446.14016 Geom. Dedicata 203, 111-133 (2019). Reviewer: Caterina Cumino (Torino) MSC: 14H20 14H45 14H51 PDF BibTeX XML Cite \textit{R. Vidal Martins} et al., Geom. Dedicata 203, 111--133 (2019; Zbl 1446.14016) Full Text: DOI
Lara, Danielle; Marchesi, Simone; Martins, Renato Vidal Curves with canonical models on scrolls. (English) Zbl 1357.14040 Int. J. Math. 27, No. 5, Article ID 1650045, 30 p. (2016). Reviewer: Fernando Torres (Campinas) MSC: 14H20 14H45 14H51 PDF BibTeX XML Cite \textit{D. Lara} et al., Int. J. Math. 27, No. 5, Article ID 1650045, 30 p. (2016; Zbl 1357.14040) Full Text: DOI arXiv
Feital, Lia; Martins, Renato Vidal Gonality of non-Gorenstein curves of genus five. (English) Zbl 1308.14029 Bull. Braz. Math. Soc. (N.S.) 45, No. 4, 649-670 (2014). MSC: 14H20 14H45 14H51 PDF BibTeX XML Cite \textit{L. Feital} and \textit{R. V. Martins}, Bull. Braz. Math. Soc. (N.S.) 45, No. 4, 649--670 (2014; Zbl 1308.14029) Full Text: DOI
Vidal Martins, Renato A generalization of Max Noether’s theorem. (English) Zbl 1234.14025 Proc. Am. Math. Soc. 140, No. 2, 377-391 (2012). Reviewer: Ezio Stagnaro (Padova) MSC: 14H20 14H45 14H51 PDF BibTeX XML Cite \textit{R. Vidal Martins}, Proc. Am. Math. Soc. 140, No. 2, 377--391 (2012; Zbl 1234.14025) Full Text: DOI arXiv
Kleiman, Steven Lawrence; Martins, Renato Vidal The canonical model of a singular curve. (English) Zbl 1172.14019 Geom. Dedicata 139, 139-166 (2009). Reviewer: Caterina Cumino (Torino) MSC: 14H20 14H45 14H51 PDF BibTeX XML Cite \textit{S. L. Kleiman} and \textit{R. V. Martins}, Geom. Dedicata 139, 139--166 (2009; Zbl 1172.14019) Full Text: DOI
Ballico, E. On the reflexivity of canonical models of non-Gorenstein curves. (English) Zbl 1005.14013 Int. Math. J. 1, No. 4, 363-365 (2002). MSC: 14H50 14N05 14M05 PDF BibTeX XML Cite \textit{E. Ballico}, Int. Math. J. 1, No. 4, 363--365 (2002; Zbl 1005.14013)
Ballico, E. Maximal degree subsheaves of torsion free sheaves on singular projective curves. (English) Zbl 0977.14017 Trans. Am. Math. Soc. 353, No. 9, 3617-3627 (2001). Reviewer: U.N.Bhosle (Mumbai) MSC: 14H60 14H20 14F05 PDF BibTeX XML Cite \textit{E. Ballico}, Trans. Am. Math. Soc. 353, No. 9, 3617--3627 (2001; Zbl 0977.14017) Full Text: DOI