×

On the distance function approach to color image enhancement. (English) Zbl 1046.94503

Summary: A new class of image processing filters is introduced and analyzed in this paper. The new filters utilize fuzzy measures applied to image pixels connected by digital paths. The performance of the proposed filters is compared to the performance of commonly used filters, such as the vector median, under a variety of performance criteria. It is shown that the proposed filters are better able to suppress impulsive and Gaussian noise than the existing techniques. Also, they are robust to inaccuracies in parameter settings.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
93E11 Filtering in stochastic control theory
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Astola, P. Haavisto, Y. Neuovo. Vector median filters, in: IEEE Proceedings, Vol. 78, 1990, pp. 678-689.; J. Astola, P. Haavisto, Y. Neuovo. Vector median filters, in: IEEE Proceedings, Vol. 78, 1990, pp. 678-689.
[2] Borgefors, G., Distance transformations in digital images, Comput. Vision Graphics Image Process., 34, 344-371 (1986)
[3] O. Cuisenaire, Distance transformations: fast algorithms and applications to medical image processing, Ph.D. Thesis, Universite Catholique de Louvain, October 1999.; O. Cuisenaire, Distance transformations: fast algorithms and applications to medical image processing, Ph.D. Thesis, Universite Catholique de Louvain, October 1999.
[4] Eisen, M. B.; Brown, P. O., DNA arrays for analysis of gene expression, Methods Enzymol., 303, 179-205 (1999)
[5] M. Gabbouj, F.A. Cheickh, Vector median—vector directional hybrid filter for colour image restoration, in: Proceedings of EUSIPCO, 1996, pp. 879-881.; M. Gabbouj, F.A. Cheickh, Vector median—vector directional hybrid filter for colour image restoration, in: Proceedings of EUSIPCO, 1996, pp. 879-881.
[6] Karakos, D.; Trahanias, P. E., Generalized multichannel image filtering structures, IEEE Trans. Image Process., 6, 7, 1038-1045 (1997)
[7] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 671-680 (1983) · Zbl 1225.90162
[8] Klein, R. W.; Dubes, R. C., Experiments in projection and clustering by simulated annealing, Pattern Recognition, 22, 213-220 (1989) · Zbl 0709.62613
[9] H. Palus, D. Bereska, Region-based colour image segmentation, in: Proceedings of the Fifth Workshop on Color Image Processing, Ilmenau, Germany, 1999, pp. 67-74.; H. Palus, D. Bereska, Region-based colour image segmentation, in: Proceedings of the Fifth Workshop on Color Image Processing, Ilmenau, Germany, 1999, pp. 67-74.
[10] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629-639 (1990)
[11] Pitas, I.; Venetsanopoulos, A. N., Nonlinear Digital Filters: Principles and Applications (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA · Zbl 0719.93080
[12] Plataniotis, K. N.; Androutsos, D.; Venetsanopoulos, A. N., Fuzzy adaptive filters for multichannel image processing, Signal Process. J., 55, 1, 93-106 (1996) · Zbl 0866.94007
[13] K.N. Plataniotis, A.N. Venetsanopoulos, Color Image Processing and Applications, Vol. August, Springer, Berlin, 2000.; K.N. Plataniotis, A.N. Venetsanopoulos, Color Image Processing and Applications, Vol. August, Springer, Berlin, 2000.
[14] Schena, M.; Shalon, D.; Davis, R. W.; Brown, P., Quantitative monitoring of gene expression patterns with a complimentary DNA microarray, Science, 270, 467-470 (1995)
[15] M. Schmitt, Lecture notes on geodesy and morphological measurements, in: Proceedings of the Summer School on Morphological Image and Signal Processing, Zakopane, Poland, 1995, pp. 36-91.; M. Schmitt, Lecture notes on geodesy and morphological measurements, in: Proceedings of the Summer School on Morphological Image and Signal Processing, Zakopane, Poland, 1995, pp. 36-91.
[16] B. Smolka, H. Palus, D. Bereska, Application of the self-avoiding random walk noise reduction algorithm in the colour image segmentation, in: Proceedings of the Sixth Workshop Color Image Processing, Berlin, 2000, pp. 21-26.; B. Smolka, H. Palus, D. Bereska, Application of the self-avoiding random walk noise reduction algorithm in the colour image segmentation, in: Proceedings of the Sixth Workshop Color Image Processing, Berlin, 2000, pp. 21-26.
[17] M.K. Szczepanski, B. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Enhancement of the DNA microarray chip images, in: A.N. Skodras, A.G. Constantinides (Eds.), Proceedings of Digital Signal Processing DSP2002, Vol. 1, Santorini, Greece, July 2002, pp. 403-406.; M.K. Szczepanski, B. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Enhancement of the DNA microarray chip images, in: A.N. Skodras, A.G. Constantinides (Eds.), Proceedings of Digital Signal Processing DSP2002, Vol. 1, Santorini, Greece, July 2002, pp. 403-406.
[18] Toivanen, P. J., New geodesic distance transforms for gray scale images, Pattern Recognition Lett., 17, 437-450 (1996)
[19] Trahanias, P. E.; Karakos, D.; Venetsanopoulos, A. N., Directional processing of color imagestheory and experimental results, IEEE Trans. Image Process., 5, 6, 868-880 (1996)
[20] Trahanias, P. E.; Venetsanopoulos, A. N., Vector directional filtersa new class of multichannel image processing filters, IEEE Trans. Image Process., 2, 4, 528-534 (1993)
[21] Viero, T.; Oistamo, K.; Neuvo, Y., Three-dimensional median-related filters for color image sequence filtering, IEEE Trans. Circuits Systems Video Technol., 4, 2, 129-142 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.