×

The structure of approximate groups. (English) Zbl 1260.20062

Summary: Let \(K\geqslant 1\) be a parameter. A \(K\)-approximate group is a finite set \(A\) in a (local) group which contains the identity, is symmetric, and such that \(A\cdot A\) is covered by \(K\) left translates of \(A\). The main result of this paper is a qualitative description of approximate groups as being essentially finite-by-nilpotent, answering a conjecture of H. Helfgott and E. Lindenstrauss. This may be viewed as a generalisation of the Freiman-Ruzsa theorem on sets of small doubling in the integers to arbitrary groups.
We begin by establishing a correspondence principle between approximate groups and locally compact (local) groups that allows us to recover many results recently established in a fundamental paper of Hrushovski. In particular we establish that approximate groups can be approximately modeled by Lie groups.
To prove our main theorem we apply some additional arguments essentially due to Gleason. These arose in the solution of Hilbert’s fifth problem in the 1950s. Applications of our main theorem include a finitary refinement of Gromov’s theorem, as well as a generalized Margulis lemma conjectured by Gromov and a result on the virtual nilpotence of the fundamental group of Ricci almost nonnegatively curved manifolds.

MSC:

20F65 Geometric group theory
11B30 Arithmetic combinatorics; higher degree uniformity
22D05 General properties and structure of locally compact groups
20F05 Generators, relations, and presentations of groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] I. Benjamini and G. Kozma, A resistance bound via an isoperimetric inequality, Combinatorica, 25 (2005), 645–650. · Zbl 1098.60075 · doi:10.1007/s00493-005-0040-4
[2] L. Bieberbach, Über einen Satz des Herrn C. Jordan in der Theorie der endlichen Gruppen linearer Substitutionen, Sitzber. Preuss. Akad. Wiss, Berlin, 1911. · JFM 42.0151.03
[3] Y. Bilu, Addition of sets of integers of positive density, J. Number Theory, 64 (1997), 233–275. · Zbl 0877.11006 · doi:10.1006/jnth.1997.2123
[4] Y. Bilu, Structure of sets with small sumset, Astérisque, 258 (1999), 77–108. Structure theory of set addition. · Zbl 0946.11004
[5] E. Breuillard and B. Green, Approximate groups. I: the torsion-free nilpotent case, J. Inst. Math. Jussieu, 10 (2011), 37–57. · Zbl 1272.11025 · doi:10.1017/S1474748010000150
[6] E. Breuillard and B. Green, Approximate groups. II: the solvable linear case, Q. J. of Math., Oxf., 62 (2011), 513–521. · Zbl 1275.11022 · doi:10.1093/qmath/haq011
[7] E. Breuillard and B. Green, Approximate groups. III: the unitary case, Turk. J. Math., 36 (2012), 199–215. · Zbl 1281.20061
[8] E. Breuillard, B. Green, and T. Tao, Approximate subgroups of linear groups, Geom. Funct. Anal., 21 (2011), 774–819. · Zbl 1229.20045 · doi:10.1007/s00039-011-0122-y
[9] Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ, Springer Series in Soviet Mathematics. · Zbl 0633.53002
[10] M.-C. Chang, A polynomial bound in Freiman’s theorem, Duke Math. J., 113 (2002), 399–419. · Zbl 1035.11048 · doi:10.1215/S0012-7094-02-11331-3
[11] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math., 144 (1996), 189–237. · Zbl 0865.53037 · doi:10.2307/2118589
[12] L. J. Corwin and F. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, CUP, Cambridge, 1990. · Zbl 0704.22007
[13] E. Croot and O. Sisask, A probabilistic technique for finding almost-periods of convolutions, Geom. Funct. Anal., 20 (2010), 1367–1396. · Zbl 1234.11013 · doi:10.1007/s00039-010-0101-8
[14] D. Fisher, N. H. Katz, and I. Peng, Approximate multiplicative groups in nilpotent Lie groups, Proc. Am. Math. Soc., 138 (2010), 1575–1580. · Zbl 1200.22003 · doi:10.1090/S0002-9939-10-10078-1
[15] G. A. Freiman, Foundations of a Structural Theory of Set Addition, American Mathematical Society, Providence, 1973. Translated from the Russian, Translations of Mathematical Monographs, vol. 37. · Zbl 0271.10044
[16] K. Fukaya and T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. Math., 136 (1992), 253–333. · Zbl 0770.53028 · doi:10.2307/2946606
[17] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Universitext, Springer, Berlin, 1987.
[18] N. Gill and H. Helfgott, Growth in solvable subgroups of GL r (Z/p Z), preprint (2010), arXiv:1008.5264 .
[19] N. Gill and H. Helfgott, Growth of small generating sets in SL n (Z/p Z), Int. Math. Res. Not., 18 (2011), 4226–4251. · Zbl 1234.20059
[20] A. M. Gleason, The structure of locally compact groups, Duke Math. J., 18 (1951), 85–104. · Zbl 0044.01901 · doi:10.1215/S0012-7094-51-01808-X
[21] A. M. Gleason, Groups without small subgroups, Ann. Math., 56 (1952), 193–212. · Zbl 0049.30105 · doi:10.2307/1969795
[22] K. Gödel, Consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory, Proc. Natl. Acad. Sci, 24 (1938), 556–557. · Zbl 0020.29701 · doi:10.1073/pnas.24.12.556
[23] I. Goldbring, Nonstandard Methods in Lie Theory, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2009. · Zbl 1275.22016
[24] I. Goldbring, Hilbert’s fifth problem for local groups, Ann. Math., 172 (2010), 1269–1314. · Zbl 1219.22004 · doi:10.4007/annals.2010.172.1273
[25] B. Green and I. Z. Ruzsa, Freiman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc., 75 (2007), 163–175. · Zbl 1133.11058 · doi:10.1112/jlms/jdl021
[26] B. Green and T. Tao, Compressions, convex geometry and the Freiman-Bilu theorem, Q. J. Math., 57 (2006), 495–504. · Zbl 1160.11003 · doi:10.1093/qmath/hal009
[27] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHÉS, 53 (1981), 53–73. · Zbl 0474.20018 · doi:10.1007/BF02698687
[28] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Modern Birkhäuser Classics, Birkhäuser, Boston, 2007. Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.
[29] M. Hall Jr., The Theory of Groups, Chelsea Publishing Co., New York, 1976. Reprinting of the 1968 edition.
[30] H. A. Helfgott, Growth and generation in SL2(Z/p Z), Ann. Math., 167 (2008), 601–623. · Zbl 1213.20045 · doi:10.4007/annals.2008.167.601
[31] H. A. Helfgott, Growth in SL3(Z/p Z), J. Eur. Math. Soc., 13 (2011), 761–851. · Zbl 1235.20047 · doi:10.4171/JEMS/267
[32] J. Hirschfeld, The nonstandard treatment of Hilbert’s fifth problem, Trans. Am. Math. Soc., 321 (1990), 379–400. · Zbl 0705.03033
[33] E. Hrushovski, Stable group theory and approximate subgroups, J. Am. Math. Soc., 25 (2012), 189–243. · Zbl 1259.03049 · doi:10.1090/S0894-0347-2011-00708-X
[34] I. Kaplansky, Lie Algebras and Locally Compact Groups, The University of Chicago Press, Chicago, 1971. · Zbl 0223.17001
[35] V. Kapovitch, A. Petrunin, and W. Tuschmann, Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. Math., 171 (2010), 343–373. · Zbl 1192.53040 · doi:10.4007/annals.2010.171.343
[36] V. Kapovitch and B. Wilking, Structure of fundamental groups of manifolds with Ricci curvature bounded below, preprint (2011), arXiv:1105.5955 .
[37] B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth, J. Am. Math. Soc., 23 (2010), 815–829. · Zbl 1246.20038 · doi:10.1090/S0894-0347-09-00658-4
[38] J. Lee and Y. Makarychev, Eigenvalue multiplicity and volume growth, preprint (2008), arXiv:0806.1745 .
[39] D. Montgomery and L. Zippin, Small subgroups of finite-dimensional groups, Ann. Math., 56 (1952), 213–241. · Zbl 0049.30106 · doi:10.2307/1969796
[40] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publishers, New York, 1955. · Zbl 0068.01904
[41] P. J. Olver, Non-associative local Lie groups, J. Lie Theory, 6 (1996), 23–51. · Zbl 0862.22005
[42] C. Pittet and L. Saloff-Coste, A survey on the relationships between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, survey, preprint (2000). · Zbl 0985.60043
[43] L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank, preprint (2010), arXiv:1005.1858 .
[44] I. Z. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hung., 65 (1994), 379–388. · Zbl 0816.11008 · doi:10.1007/BF01876039
[45] I. Z. Ruzsa, An analog of Freiman’s theorem in groups, Astérisque, 258 (1999), 323–326. · Zbl 0946.11007
[46] T. Sanders, From polynomial growth to metric balls in monomial groups, preprint (2009), arXiv:0912.0305 .
[47] T. Sanders, On a non-abelian Balog-Szemerédi-type lemma, J. Aust. Math. Soc., 89 (2010), 127–132. · Zbl 1223.11014 · doi:10.1017/S1446788710000236
[48] T. Sanders, On the Bogolyubov-Ruzsa lemma. Anal. Partial Differ. Equ. (2010), to appear, arXiv:1011.0107 . · Zbl 1320.11009
[49] T. Sanders, A quantitative version of the non-abelian idempotent theorem, Geom. Funct. Anal., 21 (2011), 141–221. · Zbl 1213.43007 · doi:10.1007/s00039-010-0107-2
[50] J.-P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol. 1500, Springer, Berlin, 2006. 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition.
[51] Y. Shalom and T. Tao, A finitary version of Gromov’s polynomial growth theorem, Geom. Funct. Anal., 20 (2010), 1502–1547. · Zbl 1262.20044 · doi:10.1007/s00039-010-0096-1
[52] T. Tao, Product set estimates for non-commutative groups, Combinatorica, 28 (2008), 547–594. · Zbl 1254.11017 · doi:10.1007/s00493-008-2271-7
[53] T. Tao, Freiman’s theorem for solvable groups, Contrib. Discrete Math., 5 (2010), 137–184. · Zbl 1332.11015
[54] T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. · Zbl 1127.11002
[55] W. P. Thurston, Three-Dimensional Geometry and Topology, vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, 1997. Edited by Silvio Levy. · Zbl 0873.57001
[56] L. van den Dries and I. Goldbring, Globalizing locally compact local groups, J. Lie Theory, 20 (2010), 519–524. · Zbl 1203.22006
[57] L. van den Dries and I. Goldbring, Seminar notes on Hilbert’s 5th problem, preprint (2010).
[58] L. van den Dries and A. J. Wilkie, Gromov’s theorem on groups of polynomial growth and elementary logic, J. Algebra, 89 (1984), 349–374. · Zbl 0552.20017 · doi:10.1016/0021-8693(84)90223-0
[59] N. T. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. · Zbl 0813.22003
[60] H. Yamabe, A generalization of a theorem of Gleason, Ann. Math., 58 (1953), 351–365. · Zbl 0053.01602 · doi:10.2307/1969792
[61] H. Yamabe, On the conjecture of Iwasawa and Gleason, Ann. Math., 58 (1953), 48–54. · Zbl 0053.01601 · doi:10.2307/1969819
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.