×

Moving mesh simulation of contact sets in two dimensional models of elastic-electrostatic deflection problems. (English) Zbl 1416.65345

Summary: Numerical and analytical methods are developed for the investigation of contact sets in electrostatic-elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K52 Initial-boundary value problems for higher-order parabolic systems
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
82D80 Statistical mechanics of nanostructures and nanoparticles

Software:

DistMesh; RODAS; MOVCOL4
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baines, M. J., Moving Finite Elements (1994), Oxford University Press: Oxford University Press Oxford · Zbl 0817.65082
[2] Baines, M. J.; Hubbard, M. E.; Jimack, P. K., Velocity-based moving mesh methods for nonlinear partial differential equations, Commun. Comput. Phys., 10, 509-576 (2011) · Zbl 1388.65094
[3] Batra, R. C.; Porfiri, M.; Spinello, D., Review of modeling electrostatically actuated microelectromechanical systems, Smart Mater. Struct., 16, R23-R31 (2007)
[4] Budd, C. J.; Galaktionov, V.; Williams, J. F., Self-similar blow-up in higher-order semilinear parabolic equations, SIAM J. Appl. Math., 64, 1775-1809 (2004) · Zbl 1112.35095
[5] Budd, C. J.; Huang, W.; Russell, R. D., Adaptivity with moving grids, Acta Numer., 18, 111-241 (2009) · Zbl 1181.65122
[6] Budd, C. J.; Williams, J. F., Parabolic Monge-Ampére methods for blow-up problems in several spatial dimensions, J. Phys. A, 39, 5425-5444 (2006) · Zbl 1096.35070
[7] Budd, C. J.; Williams, J. F., Moving mesh generation using the parabolic Monge-Ampére equation, SIAM J. Sci. Comput., 31, 3438-3465 (2009) · Zbl 1200.65099
[8] Budd, C. J.; Williams, J. F., How to adaptively resolve evolutionary singularities in differential equations with symmetry, J. Eng. Math., 66, 217-236 (2010) · Zbl 1204.35016
[9] Ceniceros, H. D.; Hou, T. Y., An efficient dynamically adaptive mesh for potentially singular solutions, J. Comput. Phys., 172, 609-639 (2001) · Zbl 0986.65087
[10] DiPietro, K. L.; Lindsay, A. E., Monge-Ampére simulation of fourth order PDEs in two dimensions with application to elastic-electrostatic contact problems, J. Comput. Phys., 349, 328-350 (2017) · Zbl 1380.65152
[11] Dai, S.; Promislow, K., Geometric evolution of bilayers under the functionalized Cahn-Hilliard equation, Proc. R. Soc. Lond. Ser. A, 469, Article 20120505 pp. (2013), 20 pp · Zbl 1371.80027
[12] Dodwell, T. J.; Peletier, M. A.; Budd, C. J.; Hunt, G. W., Self-similar voiding solutions of a single layered model of folding rocks, SIAM J. Appl. Math., 72, 444-463 (2012) · Zbl 1243.34063
[13] Friedman, A.; Oswald, L., The blow-up time for higher order semilinear parabolic equations with small leading coefficients, J. Differ. Equ., 75, 239-263 (1988) · Zbl 0676.35047
[14] Galaktionov, V., Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an analytical-numerical approach, Nonlinearity, 22, 1695-1741 (2009) · Zbl 1197.35062
[15] Galaktionov, V. A.; Vázquez, J.-L., The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst., 8, 399-433 (2002) · Zbl 1010.35057
[16] Gavish, N.; Hayrapetyan, G.; Promislow, K.; Yang, L., Curvature driven flow of bi-layer interfaces, Physica D, 240, 675-693 (2011) · Zbl 1220.92006
[17] Glasner, K. B.; Lindsay, A. E., The stability and evolution of curved domains arising from one-dimensional localized patterns, SIAM J. Appl. Dyn. Syst., 12, 650-673 (2013) · Zbl 1282.35026
[18] González-Pinto, S.; Montijano, J. I.; Pérez-Rodríguez, S., Two-step error estimators for implicit Runge-Kutta methods applied to stiff systems, ACM Trans. Math. Softw., 30, 1-18 (2004) · Zbl 1072.65105
[19] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14 (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0859.65067
[20] Huang, W., Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys., 174, 903-924 (2001) · Zbl 0991.65131
[21] Huang, W., Metric tensors for anisotropic mesh generation, J. Comput. Phys., 204, 633-665 (2005) · Zbl 1067.65140
[22] Huang, W.; Kamenski, L., A geometric discretization and a simple implementation for variational mesh generation and adaptation, J. Comput. Phys., 301, 322-337 (2015) · Zbl 1349.65664
[23] Huang, W.; Kamenski, L., On the mesh nonsingularity of the moving mesh PDE method, Math. Comput., 87, 1887-1911 (2018) · Zbl 1447.65172
[24] Huang, W.; Russell, R. D., Adaptive Moving Mesh Methods, Applied Mathematical Sciences Series, vol. 174 (2011), Springer: Springer New York · Zbl 1227.65090
[25] Krylov, S.; Dick, N., Dynamic stability of electrostatically actuated initially curved shallow micro beams, Contin. Mech. Thermodyn., 22, 445-468 (2010) · Zbl 1234.74025
[26] Krylov, S.; Ilic, B. R.; Lulinsky, S., Bistability of curved microbeams actuated by fringing electrostatic fields, Nonlinear Dyn., 66, 403-426 (2011)
[27] Krylov, S.; Ilic, B. R.; Schreiber, D.; Seretensky, S.; Craighead, H., The pull-in behavior of electrostatically actuated bistable microstructures, J. Micromech. Microeng., 18, Article 055026 pp. (2008)
[28] Lin, F.; Yang, Y., Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. Lond. Ser. A, 463, 1323-1337 (2007) · Zbl 1143.78001
[29] Lindsay, A.; Lega, J., Multiple quenching solutions of a fourth order parabolic PDE with a singular nonlinearity modeling a MEMS capacitor, SIAM J. Appl. Math., 72, 935-958 (2012) · Zbl 1254.35130
[30] Lindsay, A.; Lega, J.; Glasner, K., Regularized model of post-touchdown configurations in electrostatic MEMS: Equilibrium analysis, Physica D, 280, 281, 95-108 (2014) · Zbl 1349.74127
[31] Lindsay, A. E., An asymptotic study of blow up multiplicity in fourth order parabolic partial differential equations, Discrete Contin. Dyn. Syst., Ser. B, 19, 189-215 (2014) · Zbl 1284.35088
[32] Lindsay, A. E., Regularized model of post-touchdown configurations in electrostatic MEMS: bistability analysis, J. Eng. Math., 99, 65-77 (2016) · Zbl 1360.74052
[33] Lindsay, A. E.; Lega, J.; Sayas, F. J., The quenching set of a MEMS capacitor in two-dimensional geometries, J. Nonlinear Sci., 23, 807-834 (2013) · Zbl 1284.35072
[34] Malandain, G.; Fernández-Vidal, S., Euclidean skeletons, Image Vis. Comput., 16, 317-327 (1998)
[35] Pelesko, J. A., Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62, 888-908 (2002) · Zbl 1007.78005
[36] Perkinson, J. C.; Aziz, M. J.; Brenner, M. P.; Holmes-Cerfon, M., Designing steep, sharp patterns on uniformly ion-bombarded surfaces, Proc. Natl. Acad. Sci., 113, 11425-11430 (2016)
[37] Pelesko, J. A.; Bernstein, D. H., Modeling MEMS and NEMS (2002), Chapman Hall and CRC Press · Zbl 1031.74003
[38] P.-O. Persson, DistMesh - A Simple Mesh Generator in MATLAB, persson.berkeley.edu/distmesh; P.-O. Persson, DistMesh - A Simple Mesh Generator in MATLAB, persson.berkeley.edu/distmesh
[39] Philippin, G. A., Blow-up phenomena for a class of fourth-order parabolic problems, Proc. Am. Math. Soc., 143, 2507-2513 (2015) · Zbl 1316.35151
[40] Qiu, J.; Lang, J. H.; Slocum, A. H., A curved-beam bistable mechanism, J. Microelectromech. Syst., 13, 137-146 (2004)
[41] Russell, R. D.; Williams, J. F.; Xu, X., MOVCOL4: a moving mesh code for fourth-order time-dependent partial differential equations, SIAM J. Sci. Comput., 29, 197-220 (2007) · Zbl 1138.65095
[42] Courtesy of Sandia National Laboratories, SUMMiT(TM) Technologies www.mems.sandia.gov; Courtesy of Sandia National Laboratories, SUMMiT(TM) Technologies www.mems.sandia.gov
[43] Tang, T., Moving mesh methods for computational fluid dynamics flow and transport, (Recent Advances in Adaptive Computation. Recent Advances in Adaptive Computation, Hangzhou, 2004. Recent Advances in Adaptive Computation. Recent Advances in Adaptive Computation, Hangzhou, 2004, AMS Contemporary Mathematics, vol. 383 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 141-173
[44] Tsai, N.-C.; Sue, C.-Y., Review of MEMS-based drug delivery and dosing systems, Sens. Actuators A, Phys., 134, 555-564 (2007)
[45] van Beek, J. T.M.; Puers, R., A review of MEMS oscillators for frequency reference and timing applications, J. Micromech. Microeng., 22, Article 013001 pp. (2012)
[46] Wise, E. S.; Cox, B. T.; Treeby, B. E., Mesh density functions based on local bandwidth applied to moving mesh methods, Commun. Comput. Phys., 22, 1286-1308 (2017) · Zbl 1488.65300
[47] Ji, H.; Witelski, T. P., Finite-time thin film rupture driven by modified evaporative loss, Physica D, 342, 1-15 (2017) · Zbl 1378.76012
[48] Witelski, T. P.; Bernoff, A. J., Dynamics of three-dimensional thin film rupture, Physica D, 147, 155-176 (2000) · Zbl 0992.76013
[49] Lu, H.-W.; Glasner, K.; Bertozzi, A. L.; Kim, C.-J., A diffuse-interface model for electrowetting drops in a Hele-Shaw cell, J. Fluid Mech., 590, 411-435 (2007) · Zbl 1141.76482
[50] Zhang, F.; Huang, W.; Li, X.; Zhang, S., Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton’s iteration, J. Comput. Phys., 356, 127-149 (2018) · Zbl 1380.74107
[51] Zhang, H.; Zegeling, P. A., A moving mesh finite difference method for non-monotone solutions of non-equilibrium equations in porous media, Commun. Comput. Phys., 224, 935-964 (2017) · Zbl 1488.74135
[52] Zhang, R.; Cai, L., On the semi linear equations of electrostatic NEMS devices, Z. Angew. Math. Phys., 65, 1207-1222 (2014) · Zbl 1308.35295
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.