×

Biomechanical simulation and control of hands and tendinous systems. (English) Zbl 1334.68289


MSC:

68U20 Simulation (MSC2010)
70H99 Hamiltonian and Lagrangian mechanics
70Q05 Control of mechanical systems
92C10 Biomechanics

Software:

AnyBody; OpenSim
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albrecht, I., Haber, J., and Seidel, H.-P. 2003. Construction and animation of anatomically based human hand models. InACM SIGGRAPH/Eurographics symp. comput. anim., 98–109.
[2] Andoni, A., and Indyk, P. 2008. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions.Communications of the ACM 51(Jan), 117–122.
[3] Andrews, S., and Kry, P. G. 2013. Goal directed multi-finger manipulation: Control policies and analysis.Computers & Graphics 37, 7, 830–839.
[4] Bédard, P., and Sanes, J. 2009. Gaze and hand position effects on finger-movement-related human brain activation.J. Neurophysiol. 101, 2 (Feb), 834–842.
[5] Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods.ACM Trans. Graph. 27, 3 (Aug), 63:1–63:12.
[6] Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads.ACM Trans. Graph. 29, 4 (Jul), 116:1–116:10.
[7] Blemker, S. S., and Delp, S. L. 2005. Three-dimensional representation of complex muscle architectures and geometries.ANN BIOMED ENG 33, 5 (May), 661–673.
[8] Burridge, R. R., Rizzi, A. A., and Koditschek, D. E. 1999. Sequential Composition of Dynamically Dexterous Robot Behaviors.Int J Robot Res 18, 6 (June), 534–555.
[9] Chen, D. T., and Zeltzer, D. 1992. Pump it up: computer animation of a biomechanically based model of muscle using the finite element method. InComputer Graphics (Proc. SIGGRAPH 92), vol. 26, ACM, 89–98.
[10] Damsgaard, M., Rasmussen, J., Christensen, S., Surma, E., and Dezee, M. 2006. Analysis of musculoskeletal systems in the AnyBody Modeling System.SIMUL MODEL PRACT TH 14, 8 (Nov.), 1100–111.
[11] Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., and Thelen, D. G. 2007. OpenSim: open-source software to create and analyze dynamic simulations of movement.IEEE Trans. Biomed. Eng. 54, 11, 1940–1950.
[12] Deshpande, A. D., Ko, J., Fox, D., and Matsuoka, Y. 2013. Control strategies for the index finger of a tendon-driven hand.Int J Robot Res 32, 1 (Jan.), 115–128.
[13] DiMaio, S., and Salcudean, S. 2002. Needle insertion modelling and simulation. InICRA, vol. 2, 2098–2105 vol.2. · Zbl 1027.68792
[14] ElKoura, G., and Singh, K. 2003. Handrix: animating the human hand. InACM SIGGRAPH/Eurographics symp. comput. anim., 110–119.
[15] Epstein, M., and Herzog, W. 1998.Theoretical Models of Skeletal Muscle.John Wiley and Sibs.
[16] Fan, Y., Litven, J., and Pai, D. K. 2014. Active volumetric musculoskeletal systems.ACM Trans. Graph. 33, 4 (July), 152:1–152:9. · Zbl 06863257
[17] Fortney, K., and Tweed, D. B. 2012. Computational advantages of reverberating loops for sensorimotor learning.Neural computation 24, 3 (Mar.), 611–34. · Zbl 1237.92013
[18] Garner, B., and Pandy, M. 2000. The obstacle-set method for representing muscle paths in musculoskeletal models.Comput Methods Biomech Biomed Engin 3, 1, 1–30.
[19] Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible Muscle-Based Locomotion for Bipedal Creatures.ACM Transactions on Graphics 32, 6.
[20] Hou, Z.-G., Gupta, M. M., Nikiforuk, P. N., Tan, M., and Cheng, L. 2007. A Recurrent Neural Network for Hierarchical Control of Interconnected Dynamic Systems.IEEE Transactions on Neural Networks 18, 2 (Mar.), 466–481.
[21] Huang, H., Zhao, L., Yin, K., Qi, Y., Yu, Y., and Tong, X. 2011. Controllable hand deformation from sparse examples with rich details. InACM SIGGRAPH/Eurographics symp. comput. anim., 73–82.
[22] Indyk, P., and Motwani, R. 1998. Approximate nearest neighbor: Towards removing the curse of dimensionality. InProc. STOC, 604–613. · Zbl 1029.68541
[23] Johnson, E., Morris, K., and Murphey, T. 2009. A variational approach to strand-based modeling of the human hand. InAlgorithmic Foundation of Robotics VIII, G. Chirikjian, H. Choset, M. Morales, and T. Murphey, Eds., vol. 57 ofSpringer Tracts in Advanced Robotics.Springer, 151–166. · Zbl 1215.92005
[24] Kapandji, I. A. 2007.The Physiology of the Joints, Volume 1: Upper Limb, 6 ed. Churchill Livingstone.
[25] Kaufman, K. R., Morrow, D. A., Odegard, G. M., Donahue, T. L. H., Cottler, P. J., Ward, S., and Lieber, R. 2010. 3d model of skeletal muscle to predict intramuscular pressure. InASB Annual Conference.
[26] Kry, P. G., and Pai, D. K. 2006. Interaction capture and synthesis.ACM Trans. Graph. 25, 3 (Jul), 872–880.
[27] Kurihara, T., and Miyata, N. 2004. Modeling deformable human hands from medical images. InACM SIGGRAPH/ Eurographics symp. comput. anim., 355–363.
[28] Lang, C. E., and Schieber, M. H. 2004. Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control.J. Neurophysiol. 92, 5 (Nov.), 2802–2810.
[29] Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: biomechanical modeling and neuromuscular control of the neck.ACM Trans. Graph. 25, 3 (Jul), 1188–1198.
[30] Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body.ACM Trans. Graph. 28, 4 (Sep), 99:1–99:17.
[31] Lee, Y., Park, M. S., Kwon, T., and Lee, J. 2014. Locomotion control for many-muscle humanoids.ACM Trans. Graph. 33, 6 (Nov.), 218:1–218:11. · Zbl 1398.68648
[32] Leijnse, J. N., Bonte, J. E., Landsmeer, J. M., Kalker, J. J., Van Der Meulen, J. C., and Snijders, C. J. 1992. Biomechanics of the finger with anatomical restrictions–the significance for the exercising hand of the musician.J. Biomech. 25, 11, 1253–1264.
[33] Li, Y., Fu, J. L., and Pollard, N. S. 2007. Data-driven grasp synthesis using shape matching and task-based pruning.IEEE Trans. Vis. Comput. Graphics 13(July), 732–747.
[34] Li, D., Sueda, S., Neog, D. R., and Pai, D. K. 2013. Thin skin elastodynamics.ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (July), 49:1–49:9. · Zbl 1305.68311
[35] Liu, C. K. 2008. Synthesis of interactive hand manipulation. InACM SIGGRAPH/Eurographics symp. comput. anim., 163–171.
[36] Liu, C. K. 2009. Dextrous manipulation from a grasping pose.ACM Trans. Graph. 28(Jul), 59:1–59:6.
[37] Malhotra, M., Rombokas, E., Theodorou, E., Todorov, E., and Matsuoka, Y. 2012. Reduced Dimensionality Control for the ACT Hand. InICRA, IEEE, 5117–5122.
[38] McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions.ACM Trans. Graph. 30, 4 (Jul), 37:1–37:12.
[39] Mordatch, I., Popović, Z., and Todorov, E. 2012. Contact-invariant optimization for hand manipulation. InProceedings of the ACM SIGGRAPH/Eurographics symp. comput. anim., Eurographics Association, 137–144.
[40] Ng-Thow-Hing, V. 2001.Anatomically-based models for physical and geometric reconstruction of humans and other animals.PhD thesis, The University of Toronto.
[41] Pollard, N. S., and Zordan, V. B. 2005. Physically based grasping control from example. InACM SIGGRAPH/Eurographics symp. comput. anim., 311–318.
[42] Robinson, D., O’meara, D., Scott, A., and Collins, C. 1969. Mechanical components of human eye movements.Journal of Applied Physiology 26, 5, 548–553.
[43] Rombokas, E., Malhotra, M., Theodorou, E., Todorov, E., and Matsuoka, Y. 2012. Tendon-Driven Variable Impedance Control Using Reinforcement Learning. InRSS.
[44] Shadmehr, R. 1998. Equilibrium point hypothesis. InThe handbook of brain theory and neural networks, MIT Press, 370–372.
[45] Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data.ACM Trans. Graph. 24, 3 (Jul), 417–425.
[46] Spillmann, J., and Teschner, M. 2008. An adaptive contact model for the robust simulation of knots.Computer Graphics Forum 27, 2, 497–506.
[47] Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation.ACM Trans. Graph. 27, 3 (Aug), 83:1–83:8.
[48] Sueda, S., Jones, G. L., Levin, D. I. W., and Pai, D. K. 2011. Large-scale dynamic simulation of highly constrained strands.ACM Trans. Graph. 30, 4 (Jul), 39:1–39:9.
[49] Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. InACM SIGGRAPH/Eurographics symp. comput. anim., 68–74.
[50] Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set.IEEE Transactions on Visualization and Computer Graphics 11, 3, 317–328.
[51] Tsang, W., Singh, K., and Fiume, E. 2005. Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion. InACM SIGGRAPH/Eurographics symp. comput. anim., 319–328.
[52] Valero-Cuevas, F., Yi, J.-W., Brown, D., McNamara, R., Paul, C., and Lipson, H. 2007. The tendon network of the fingers performs anatomical computation at a macroscopic scale.IEEE Trans. Biomed. Eng. 54, 6, 1161–1166.
[53] Wang, J. M., Hamner, S. R., Delp, S. L., and Koltun, V. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives.ACM Trans. Graph. 31, 4 (July), 25:1–25:11.
[54] Wang, Y., Min, J., Zhang, J., Liu, Y., Xu, F., Dai, Q., and Chai, J. 2013. Video-based hand manipulation capture through composite motion control.ACM Trans. Graph. 32, 4 (July), 43:1–43:14. · Zbl 1305.68289
[55] Zajac, F. 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.Crit Rev Biomed Eng. 17, 4, 359–411.
[56] Zancolli, E. 1979.Structural and Dynamic Bases of Hand Surgery.Lippincott.
[57] Zhang, A., Malhotra, M., and Matsuoka, Y. 2011. Musical piano performance by the ACT Hand. InIEEE International Conference on Robotics and Automation, IEEE, Shanghai, 3536–3541.
[58] Zhao, W., Zhang, J., Min, J., and Chai, J. 2013. Robust realtime physics-based motion control for human grasping.ACM Trans. Graph. 32, 6 (Nov.), 207:1–207:12.
[59] Zhu, Q.-H., Chen, Y., and Kaufman, A. 1998. Real-time biomechanically-based muscle volume deformation using FEM.Computer Graphics Forum 17, 3, 275–284.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.