×

Review of the human masticatory system and masticatory robotics. (English) Zbl 1338.70012

Summary: A masticatory robot refers to a robot that can perform at least some defined human masticatory functions. This paper briefly reviews the masticatory system, masticatory measurements and computational models of mastication that are relevant to masticatory robotics. Also critically reviewed is the state of the art of the robotics research in engineering of the jaw system. The masticatory system has two rigid components: a fixed maxillary (upper) jaw and a mobile mandibular (lower) jaw, which are joined by two temporomandibular joints (TMJ). Unique features of the TMJ are described. The role of muscles of mastication is explained with regard to their role in rhythmic opening and closing of the mandible in three-dimensional space. Because the breakdown of food is performed directly by the teeth; the functionalities of the incisor, pre-molar and rear molar are presented. Two computational models of the masticatory system are presented in which Hill-type muscle models are used. We also describe masticatory robots developed for dental training, jaw simulation, food texture and breakdown analysis, and speech therapy with regard to muscle modelling, TMJ models, masticatory biomechanics and controls of actuation. Finally, we discuss the major accomplishments and challenges in masticatory modelling and robotics; and we compare a number of such robots in the light of relevant biomechanical aspects of the mastication system.

MSC:

70B15 Kinematics of mechanisms and robots
74L15 Biomechanical solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bourne, M. C.: Relationship between rheology and food texture, Engineering and food for the 21st century (2002)
[2] Heath, M. R.; Prinz, J. F.: Oral processing of foods and the sensory evaluation of texture, Food texture: measurement and perception (1999)
[3] Ow, R. K. K.; Carlsson, G. E.; Karlsson, S.: Relationship of masticatory mandibular movements to masticatory performance of dentate adults: a method study, J. oral rehab. 25, 821-829 (1998)
[4] Nakajima, J.; Hidesshima, M.: Masticatory mandibular movements for different food texture related to onomatopoetic words, J. med. Dent. sci. 48, 121-129 (2001)
[5] Tsuruta, J.; Mayanagi, A.: An index for analysing the stability of lateral excursions, J. oral rehab. 29, 274-281 (2002)
[6] Hayasaki, H.; Nakata, S.: A calculation method for the range of occluding phase at the lower incisal point during chewing movements using the curved mesh diagram of mandibular excursion (CMDME), J. oral rehab. 26, 236-242 (1999)
[7] Palla, S.; Krebs, M.; Gallo, L. M.: Jaw tracking and temporomandibular joint animation, Science and practice of occlusion (1997)
[8] Anderson, K.; Throckmorton, G. S.: The effects of bolus hardness on masticatory kinematics, J. oral rehab. 29, 689-696 (2002)
[9] Peyron, M. A.; Lassauzay, C.; Woda, A.: Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods, Exp. brain res. 142, 41-51 (2002)
[10] Foster, K.; Woda, A.; Peyron, M. -A.: Effect of texture of plastic and elastic model foods on the parameters of mastication, J. neurophysiol. 95, 3469-3479 (2006)
[11] Tortopidis, D.; Lyons, M. F.: The variability of bite force measurement between sessions in different positions within the dental arch, J. oral rehab. 25, 681-686 (1998)
[12] Koolstra, J. H.: Number crunching with the human masticatory system, J. dent. Res. 82, No. 9, 672-767 (2003)
[13] Osborn, J. W.; Baragar, F. A.: Predicted pattern of human muscle activity during clenching derived from a computer assisted model: symmetric vertical bite force, J. biomech. 29, No. 5, 589-595 (1985)
[14] Osborn, J. W.: Features of human jaw design which maximize the bite force, J. biomech. 29, No. 5, 589-595 (1996)
[15] Koolstra, J. H.; Van Eijden, T. M.: A three-dimensoinal mathematical model of the human masticatory system predicting maximum possible bite force, J. biomech. 21, 563-567 (1988)
[16] Koolstra, J. K.; Van Eijden, T. M.: Application and validation of a three-dimensional mathematical model of the human masticatory system in vivo, J. biomech. 25, 175-187 (1992)
[17] Koolstra, J. H.: Dynamics of the human masticatory system, Crit. rev. Oral biol. Med. 13, 366-376 (2002)
[18] Koolstra, J. H.; Van Eijden, T. M.: Dynamics of the human masticatory muscles during a jaw open – close movement, J. biomech. 30, No. 9, 883-889 (1997)
[19] Koolstra, J. H.; Van Eijden, T. M.: A method to predict muscle control in the kinematically and mechanically indeterminate human masticatory system, J. biomech. 34, 1179-1188 (2001)
[20] Hannam, A. C.: Jaw muscle structure and function, Science and practice of occlusion, 41-49 (1997)
[21] Peck, C. C.; Sooch, A. S.; Hannam, A. G.: Forces resisting jaw displacement in relaxed humans: a predominantly viscous phenomenon, J. oral rehab. 29, 151-160 (2002)
[22] Röhrle, O.; Pullan, A. J.: Three-dimensional finite element modelling of muscle forces during mastication, J. biomech. 40, 3363-3372 (2007)
[23] H. Takanobu, A. Takanishi, D. Ozawa, K. Ohtsuki, M. Ohnishi, A. Okino, Integrated dental robot system for mouth opening and closing training, in: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, May 2002, pp. 1428 – 1433.
[24] H. Takanobu, A. Takanishi, Dental robotics and human model, in: Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, 20 – 22 May 2003, pp. 671 – 674.
[25] Nakajima, S. I.; Hayashi, T.; Kobayashi, H.: Development of 2-D jaw movement simulator (JSN/S1), J. robotics mechatronics 10, No. 6, 499-504 (1998)
[26] Xu, W. L.; Bronlund, J.; Kieser, J.: A robotic model of human masticatory system for reproducing chewing behaviours, IEEE robotics automation mag. 12, No. 2, 90-98 (2005)
[27] J. Torrance, J.-S. Pap, W.L. Xu, J. Bronlund, K.D. Foster, Motion control of a chewing robot of 6 RSS parallel mechanism, in: Proceedings of International Conference on Autonomous Robotics and Agents, Palmerston North, New Zealand, 12 – 14 December 2006.
[28] B. Lin, Chew on this, UBC Reports, Vancouver, BC, Canada, 2005, pp. 1 – 8.
[29] Flores, E.; Fels, S.: Design of a 6 DOF antropomorphic robotic jaw, J. acoustical soc. Am. 117, No. 4, 2547 (2005)
[30] Gray, H.: Anatomy of mastication, (1918)
[31] Koolstra, J. H.: Dynamics of the human masticatory system, Crit. rev. Oral biol. Med. 13, No. 4, 366-376 (2002)
[32] Scapino, R. P.: Morphology and mechanism of the jaw joint, Science and practice of occlusion (1997)
[33] S.K. Lehman-Grimes, A review of temporomandibular disorder and an analysis of mandibular motion, Master of Dental Science Thesis, the University of Tennessee, May 2005, p. 151.
[34] Koolstra, J. H.; Van Eijden, T. M. G.J.: Three-dimensional dynamical capabilities of the human masticatory muscles, J. biomech. 32, 145-152 (1999)
[35] Lucas, P. W.: The structure of the mammalian mouth, , 13-54 (2004)
[36] Lucas, P. W.: Tooth shape, , 87-132 (2004)
[37] Ashby, M. F.; Jones, D. R. H.: Second ed.engineering materials, Engineering materials 1 (1996)
[38] Frank, F. C.; Lawn, B. R.: On the theory of Hertzian fracture, Proc. royal soc. Lon. series A, 291-316 (1967)
[39] Oralb. Available from: <www.oralb.com/images/learningcenter/teaching/>.
[40] Dawson, P. E.: Evaluation diagnosis and treatment of occlusal problems, (1989)
[41] B. Palmer, Occlusion, 2005. Available from: <www.brianpalmerdds.com/pdf/A-Occlusion.pdf>.
[42] W.P.D. Wynne, The Art of Articulation, vol. 3, no. 1, 2005.
[43] Posselt, U.: Movement areas of the mandible, J. pros. Dent. 7, 375-385 (1957)
[44] Douglass, G. D.; Devreugd, R. T.: The dynamics of occlusal relationships, Science and practice of occlusion, 69-78 (1997)
[45] Ogawa, T.; Ogawa, M.; Koyano, K.: Different responses of masticatory movements after alternation of occlusal guidance related to individual movement pattern, J. oral rehab. 28, 830-841 (2001)
[46] O. Röhrle, I.A. Anderson, A.J. Pullan, From jaw tracking towards dynamic computer models of human mastication, in: IFBME Proceedings of 12th International Conference on Biomedical Engineering, Singapore, 7 – 10 December, 2005.
[47] O. Röhrle, I.A. Anderson, A.J. Pullan, Modelling human mastication and its applications, in: Proceedings of the 45th Annual Meeting of Australian/New Zealand Division of the International Association for Dental Research, Otago, New Zealand, 25 – 28 September, 2005.
[48] Gibbs, C. H.; Lundeen, H. C.: Jaw movements and forces during chewing and swallowing and their clinical significance, Adv. occlusion, 2-32 (1982)
[49] Anderson, D. J.: Measurements of stress in mastication, J. dent. Res. 41, 175-189 (1956)
[50] Gibbs, C. H.; Mahan, P. E.; Lundeen, H. E.: Occlusal forces during chewing – influences of biting strength and food consistency, J. prosthetic dent. 46, 561-567 (1981)
[51] Wood, G. D.; Williams, J. E.: Gnathodynamometer: measuring opening and closing forces, Dent. update 8, 239-250 (1981)
[52] Every, R. F.: Sharpness of teeth in man and other primates, Postilla 143, 1-20 (1981)
[53] Helkimo, E.; Ingervall, B.: Bite force and functional state of the masticatory system in Young men, Swed. dent. J. 2, 167-175 (1978)
[54] Sharkey, P.; Boyle, D. K.; Orchardson, R. P.; Mcgowan, D. A.: Jaw opening forces in human subjects, Br. dent. J. 156, 89-92 (1984)
[55] Stegman, D. F.; Blok, J. H.; Hermens, H. J.; Roeleveld, K.: Surface EMG models: properties and applications, J. electromyogr. Kinesiol. 10, No. 5, 313-326 (2000)
[56] Barbenel, J.: The mechanics of the temporomandibular joint – a theoretical and electromyographical study, J. oral rehab. 1, No. 1, 19-27 (1974)
[57] Throckmorton, G. S.; Throckmorton, L. S.: Quantitative calculations of temporomandibular joint reaction forces – I. The importance of the magnitude of the jaw muscle forces, J. biomech. 18, No. 6, 445-452 (1985)
[58] May, B.; Saha, S.; Saltzman, M.: A three-dimensional mathematical model of temporomandibular joint loading, Clin. biomech. 16, No. 6, 489-495 (2001)
[59] Gonalez, R.; Montoya, I.; Carcel, J.: Review: the use of electromyography on food texture assessment, Food sci. Technol. int. 7, No. 6, 461-471 (2001)
[60] Korioth, T.; Romilly, D.; Hannam, A.: Three-dimensional finite element stress analysis of the dentate human mandible, Am. J. Phys. anthropol. 88, No. 1, 69-96 (1992)
[61] Clason, C.; Hinz, A. M.; Schieferstein, H.: A method for material parameter determination for the human mandible based on simulation and experiment, Comput. methods biomech. Biomed. eng. 7, No. 5, 265-276 (2004)
[62] Ichim, I.; Swain, M. V.; Kieser, J. A.: Mandibular stiffness in humans: numerical predictions, J. biomech. 39, No. 10, 1903-1913 (2006)
[63] Van Essen, N.; Anderson, I.; Hunter, P.; Carman, J.; Clarke, R.; Pullan, A. J.: Anatomically based modeling of the human skull and jaw, Cells tissues organs 180, No. 1, 44-53 (2005)
[64] Ichim, I.; Swain, M. V.; Kieser, J. A.: Mandibular biomechanics and development of the human chin, J. dent. Res. 85, No. 7, 638-642 (2006)
[65] Mulder, L.; Van Ruijven, L. J.; Koolstra, J. H.; Van Eijden, T. M. G.J.: Biomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle, J. biomech. 40, 1575-1582 (2007)
[66] O’connor, C.; Franciscus, R.; Holton, N.: Bite force production capability and efficiency in neandertals and modern humans, Am. J. Phys. anthropol. 127, No. 2, 129-151 (2005)
[67] Koolstra, J.; Van Eijden, T.: The jaw open – close movements predicted by biomechanical modelling, J. biomech. 30, No. 9, 943-950 (1997)
[68] Gal, J. A.; Gallo, L. M.; Murray, G.; Johnson, C. W.; Klineberg, I. J.; Palla, S.: Wrench axis parameters for representing mandiblular muscle forces, J. dent. Res. 80, No. S1, 534 (2001)
[69] Gal, J. A.; Gallo, L. M.; Palla, S.; Murray, G.; Klineberg, I. J.: Analysis of human mandibular mechanics based on screw theory and vivo data, J. biomech. 37, 1405-1412 (2004)
[70] Weijs, W.; Hillen, B.: Cross-sectional areas and estimated intrinsic strength of the human jaw muscles, Acta morphol. Neerl. scand. 23, No. 3, 267-274 (1985)
[71] Van Eijden, T. M. G.J.; Korfage, J. A. M.; Brugman, P.: Architecture of the human jaw-closing and jaw-opening muscles, Anat. record 248, 464-474 (1997)
[72] Koolstra, J.; Van Eijden, T.; Van Spronsen, P.; Weijs, W.; Valk, J.: Computer-assisted estimation of lines of action of human masticatory muscles reconstructed in vivo by means of magnetic resonance imaging of parallel sections, Arch. oral biol. 35, No. 7, 549-556 (1990)
[73] Cattaneo, P.; Kofod, T.; Dalstra, M.; Melsen, B.: Using the finite element method to model the biomechanics of the asymmetric mandible before, during and after skeletal correction by distraction osteogenesis, Comput. methods biomech. Biomed. eng. 8, No. 3, 157-165 (2005)
[74] Koolstra, J.; Van Eijden, T.: Combined finite-element and rigid-body analysis of human jaw joint dynamics, J. biomech. 38, No. 12 (2005)
[75] Hirose, M.; Tanaka, E.; Tanaka, M.; Fujita, R.; Kuroda, Y.; Van Eijden, T. M. G.J.; Tanne, K.: Three-dimensional finite-element model of the human temporo-mandibular joint disc during prolonged clenching, Eur. J. Oral sci. 114, No. 5, 441-448 (2006)
[76] Tanaka, E.; Yamano, E.; Dalla-Bona, D. A.; Watanabe, M.; Inubushi, T.; Shirakura, M.; Sano, R.; Takahashi, K.; Van Eijden, T. M. G.J.; Tanne, K.: Dynamic compressive properties of the mandibular condylar cartilage, J. dent. Res. 85, No. 6, 571-575 (2006)
[77] Koolstra, J.; Van Eijden, T.: Prediction of volumetric strain in the human temporomandibular joint cartilage during jaw movement, J. anat. 209, No. 3, 369-380 (2006)
[78] Van Loon, J.; Otten, E.; Falkenstrom, C.; De Bont, L.; Verkerke, G.: Loading of a unilateral temporomandibular joint prosthesis: a three dimensional mathematical study, J. dent. Res. 77, No. 11, 1939-1947 (1998)
[79] M. De Zee, P.M. Cattaneo, M. Dalstra, J. Rasmussen, P. Svensson, B. Melsen, Validation of a musculo-skeletal model of the mandible and its application to mandibular distraction osteogenesis, J. Biomech., August 2006 (Epub).
[80] Van Eijden, T. M. G.J.; Koolstra, J. H.; Brugman, P.: Architecture of the human pterygoid muscles, J. dent. Res. 74, 1489-1495 (1995)
[81] Van Eijden, T. M. G.J.; Koolstra, J. H.; Brugman, P.: Three-dimensional structure of the human temporalis muscle, Anat. record 248, 565-572 (1996)
[82] T. Weingartner, S. Hassfeld, R. Dillmann, Dynamic simulation of the jaw and chewing muscles for maxillofacial surgery, in: Proceedings of IEEE Nonrigid and Articulated Motion Workshop (NRAMW97), Puerto Rico, June 1997, pp. 104 – 111.
[83] Weingartner, T.; Hassfeld, S.; Dillmann, R.: Virtual jaw: a 3D simulator for computer assisted surgery and education, Stud. health technol. Inform. 50, 329-335 (1998)
[84] H. Takanobu, T. Maruyama, A. Takanishi, K. Ohtsuki, M. Ohinishi, Mouth opening and closing training with 6-DOF parallel robot, in: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, April 2000, pp. 1384 – 1389.
[85] H. Takanobu, K. Ohtsuki, A. Takanishi, M. Ohnishi, A. Okino, Jaw training robot and its clinical results, in: Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), 2003, pp. 932 – 937.
[86] A. Okino, T. Inoue, H. Takanobu, A. Takanishi, K. Ohtsuki, M. Ohnishi, Y. Nakano, A clinical jaw movement training robot for lateral movement training, in: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14 – 19 September 2003, pp. 244 – 249.
[87] H. Takanobu, T. Yajima, et al., Quantification of masticatory efficiency with a mastication robot, in: Proceedings of the IEEE Internal Conference on Robotics and Automation, 1998, pp. 1635 – 1640.
[88] A. Takanishi, T. Tanase, M. Tumei, I. Kato, Development of 3 DOF jaw robot WJ-2 as a human’s mastication simulator, in: Proceedings of Fifth International Conference on Advanced Robotics, Pisa, June 1991, pp. 277 – 282.
[89] H. Takanobu, T. Tanase, A. Takanishi, I. Kato, Adaptive masticaory jaw motion using jaw position and biting force information, in: Proceedings of the 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Las Vegas, 2 – 5 October 1994, pp. 360 – 365.
[90] H. Takanobu, N. Kuchiki, A. Takanishi, Control of rapid closing motion of a robot jaw using nonlinear spring mechanism, in: Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburg, August 1995, pp. 372 – 377.
[91] H. Takanobu, T. Yajima, A. Takanishi, Development of a mastication robot using nonlinear viscoelastic mechanism, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997, pp. 1527 – 1532.
[92] T. Hayashi, S. Tanaka, S Nakajima, H. Kobayashi, Y. Yamada, M. Miyakawa, Control mechanism of an autonomous jaw-movement simulator JSN/1C during open – close movement, in: Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996, pp. 613 – 614.
[93] T. Hayashi, S. Kato, S. Nakajima, Y. Yamada, H. Kobayashi, Physiological control scheme of jaw simulator JSN/2A for improving reproducibility of open – close movement, in: Proceedings of the First Joint BMES/EMBS Conference, Atlanta, USA, 13 – 16 October 1999, p. 564.
[94] T. Hayashi, S. Kato, S. Yamada, S. Nakajima, Y. Yamada, H. Kobayashi, A physiological control of chewing-like jaw movement for robotized jaw simulator JSN/2A, in: Proceedings of the 22nd Annual EMBS International Conference, Chicago, USA, 23 – 28 July 2000, pp. 730 – 731.
[95] Daumas, B.; Xu, W. L.; Bronlund, J.: Jaw mechanism modeling and simulation, Mech. machine theor. 40, No. 7, 821-833 (2005) · Zbl 1113.70304
[96] Pap, J. -S.; Xu, W. L.; Bronlund, J.: A robotic human masticatory system – kinematics simulations, Int. J. Intell. syst. Technol. appl. (IJISTA) 1, No. 1 – 2, 3-17 (2005)
[97] J.-S. Pap, W.L. Xu, J.E. Bronlund, O. Röhrle, A.J. Pullan, Designing a robot based on parallel mechanism to reproduce human chewing behaviour, VDI-Berichte No. 1956, ISR 2006 – ROBOTIK 2006, in: Proceedings of the Joint Conference on Robotics, Munich, Germany, 15 – 17 May, 2006.
[98] Xu, W. L.; Pap, J. S.; Bronlund, J.: Design of a biologically inspired chewing robot, IEEE trans. Industrial electr. 55, No. 2, 832-841 (2008)
[99] C. Bowey, D. Burgess, Robotic temporomandibular joint, Final Year Project Report, School of Mechanical Engineering, The University of Adelaide, 2005, p. 69.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.