×

A model of a snorer’s upper airway. (English) Zbl 0974.92007

Summary: In snorers, the physiologic decrease of postural muscle tone during sleep results in increased collapsibility of the upper airway. Measurement of nasal pressure changes with prongs is increasingly used to monitor flow kinetics through a collapsing upper airway. This report presents a mathematical model to predict nasal flow profile from three critical components that control upper airway patency during sleep. The model includes the respiratory pump drive, the stiffness of the pharyngeal soft tissues, and the dynamic support of the muscles surrounding the upper airway. Depending on these three components, the proposed model is able to reproduce the characteristic changes in flow profile that are clinically observed in snorers and nonsnorers during sleep.

MSC:

92C35 Physiological flow
92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Smith, P. L.; Wise, R. A.; Gold, A. R.; Schwartz, A. R.; Permutt, S., Upper airway pressure-flow relationships in obstructive sleep apnea, J. Appl. Physiol., 64, 789 (1988)
[2] Isono, S.; Feroah, T. R.; Hajduk, E. A.; Brant, R.; Whitelaw, W. A.; Remmers, J. E., Interaction of cross-sectional area, driving pressure, and airflow of passive velopharynx, J. Appl. Physiol., 83, 851 (1997)
[3] Hosselet, J. J.; Norman, R. G.; Ayappa, I.; Rapoport, D. M., Detection of flow limitation with a nasal cannula/pressure transducer system, Am. J. Respir. Crit. Care Med., 157, 1461 (1998)
[4] Condos, R.; Norman, R. G.; Krishnasamy, I.; Peduzzi, N.; Goldring, R. M.; Rapoport, D. M., Flow limitation as a noninvasive assessment of residual upper-airway resistance during continuous positive airway pressure therapy of obstructive sleep apnea, Am. J. Respir. Crit. Care Med., 150, 475 (1994)
[5] Huang, L.; Quinn, S. J.; Ellis, P. D.M.; Ffowcs Williams, J. E., Biomechanics of snoring, Endeavour, 19, 96 (1995)
[6] Bertram, C. D.; Pedley, T. J., A mathematical model of unsteady collapsible tube behaviour, J. Biomech., 15, 39 (1982)
[7] Armitstead, J. P.; Bertram, C. D.; Jensen, O. E., A study of the bifurcation behaviour of a model of flow through a collapsible tube, Bull. Math. Biol., 58, 611 (1996) · Zbl 0859.92005
[8] Cancelli, C.; Pedley, T. J., A separated-flow model for collapsible-tube oscillations, J. Fluid Mech., 157, 375 (1985)
[9] Morgan, P.; Parker, K. H., A mathematical model of flow through a collapsible tube - I. Model and steady flow results, J. Biomech., 22, 1263 (1989)
[10] Heil, M.; Pedley, T. J., Large post-buckling deformations of cylindrical shells conveying viscous flow, J. Fluids Struct., 10, 565 (1996)
[11] Heil, M., Stokes flow in collapsible tubes: computation and experiment, J. Fluid Mech., 353, 285 (1997) · Zbl 0922.76113
[12] Pedley, T. J.; Luo, X. Y., Modelling flow and oscillations in collapsible tubes, Theoret. Comput. Fluid Dynamics, 10, 277 (1998) · Zbl 0931.74024
[13] Gavriely, N.; Jensen, O., Theory and measurements of snores, J. Appl. Physiol., 74, 2828 (1993)
[14] Huang, L.; Ffowcs Williams, J. E., Neuromechanical interaction in human snoring and upper airway obstruction, J. Appl. Physiol., 86, 1759 (1999)
[15] Fodil, R.; Ribreau, C.; Louis, B.; Lofaso, F.; Isabey, D., Interaction between steady flow and individualised compliant segments: applications to upper airways, Med. Biol. Eng. Comput., 35, 638 (1997)
[16] Reisch, S.; Steltner, H.; Timmer, J.; Renotte, C.; Guttmann, J., Early detection of upper airway obstructions by analysis of acoustical respiratory input impedance, Biol. Cybern., 81, 25 (1999) · Zbl 0928.92016
[17] Aittokallio, T.; Nevalainen, O.; Pursiheimo, U.; Saaresranta, T.; Polo, O., Classification of nasal inspiratory flow shapes by attributed finite automata, Comput. Biomed. Res., 32, 34 (1999)
[18] Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations (1989), Wadsworth and Brooks/Cole Advanced Books and Software: Wadsworth and Brooks/Cole Advanced Books and Software Pacific Grove, CA · Zbl 0681.65064
[19] Montserrat, J. M.; Ballester, E.; Olivi, H.; Reolid, A.; Lloberes, P.; Morello, A.; Rodriguez-Roisin, R., Time-course of stepwise CPAP titration, Am. J. Respir. Crit. Care Med., 152, 1854 (1995)
[20] Siafakas, N. M.; Chang, H. K.; Bonora, M.; Gautier, H.; Milic-Emili, J.; Duron, B., Time course of phrenic activity and respiratory pressures during airway occlusion in cats, J. Appl. Physiol., 51, 99 (1981)
[21] Khoo, M. C.K., A model-based evaluation of the single-breath \(CO_2\) ventilatory response test, J. Appl. Physiol., 68, 393 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.