×

A polymorphic element formulation towards multiscale modelling of composite structures. (English) Zbl 1440.74411

Summary: This paper presents a new polymorphic element modelling approach for multi-scale simulation, with an application to fracture in composite structures. We propose the concept of polymorphic elements; these are elements that exist as an evolving superposition of various states, each representing the relevant physics with the required level of fidelity.
During a numerical simulation, polymorphic elements can change their formulation to more effectively represent the structural state or to improve computational efficiency. This change is achieved by transitioning progressively between states and by repartitioning each state on-the-fly as required at any given instant during the analysis. In this way, polymorphic elements offer the possibility to carry out a multiscale simulation without having to define a priori where the local model should be located.
Polymorphic elements can be implemented as simple user-defined elements which can be readily integrated in a Finite Element code. Each individual user-defined polymorphic element contains all the relevant superposed states (and their coupling), as well as the ability to self-refine.
We implemented a polymorphic element with continuum (plain strain) and structural (beam) states for the multiscale simulation of crack propagation. To verify the formulation, we applied it to the multiscale simulation of known mode I, mode II andmixed-mode I and II crack propagation scenarios, obtaining good accuracy and up to 70% reduction in computational time – the reduction in computational time can potentially be even more significant for large engineering structures where the local model is a small portion of the total.
We further applied our polymorphic element formulation to the multiscale simulation of a more complex problem involving interaction between cracks (delamination migration), thereby demonstrating the potential impact of the proposed multiscale modelling approach for realistic engineering problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R10 Brittle fracture
74E30 Composite and mixture properties

Software:

PERMIX
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Correia, V. M.F.; Gomes, M. A.A.; Suleman, A.; Soares, C. M.M.; Soares, C. A.M., Modelling and design of adaptive composite structures, Comput. Methods Appl. Mech. Engrg., 185, 2-4, 325-346 (2000) · Zbl 0981.74010
[2] Mandel, U.; Taubert, R.; Hinterhölzl, R., Laminate damage model for composite structures, Compos. Struct., 136, 441-449 (2016)
[3] Higuchi, R.; Okabe, T.; Nagashima, T., Numerical simulation of progressive damage and failure in composite laminates using xfem/czm coupled approach, Composites A, 95, 197-207 (2017)
[4] Van der Meer, F.; Sluys, L., A phantom node formulation with mixed mode cohesive law for splitting in laminates, Int. J. Fract., 158, 2, 107 (2009) · Zbl 1400.74106
[5] Van Der Meer, F.; Sluys, L., Continuum models for the analysis of progressive failure in composite laminates, J. Compos. Mater., 43, 20, 2131-2156 (2009)
[6] Alfano, G.; Crisfield, M., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Internat. J. Numer. Methods Engrg., 50, 7, 1701-1736 (2001) · Zbl 1011.74066
[7] Alfano, G.; de Sciarra, F. M., Mixed finite element formulations and related limitation principles: a general treatment, Comput. Methods Appl. Mech. Engrg., 138, 1-4, 105-130 (1996) · Zbl 0881.73121
[8] Heimbs, S.; Heller, S.; Middendorf, P.; Hähnel, F.; Weiße, J., Low velocity impact on cfrp plates with compressive preload: test and modelling, Int. J. Impact Eng., 36, 10, 1182-1193 (2009)
[9] Areias, P.; Song, J.; Belytschko, T., Analysis of fracture in thin shells by overlapping paired elements, Comput. Methods Appl. Mech. Engrg., 195, 41, 5343-5360 (2006) · Zbl 1120.74048
[10] Qiao, H.; Chen, W.; Yang, Q.; Lua, J., Augmented cohesive elements for efficient delamination analyses of composite laminates, J. Eng. Mater. Technol., 133, 4, 041010 (2011)
[11] Dávila, C.; Camanho, P.; Turon, A., Effective simulation of delamination in aeronautical structures using shells and cohesive elements, J. Aircr., 45, 2, 663-672 (2008)
[12] Reinoso, J.; Blázquez, A., Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP composites, Compos. Struct., 139, 263-276 (2016)
[13] Zheng, S.; Sun, C., A double-plate finite-element model for the impact-induced delamination problem, Compos. Sci. Technol., 53, 1, 111-118 (1995)
[14] M. McElroy, An enriched shell finite element for progressive damage simulation in composite laminates, Langley Research Center NASA/TP-2016-219211.; M. McElroy, An enriched shell finite element for progressive damage simulation in composite laminates, Langley Research Center NASA/TP-2016-219211.
[15] Larsson, R., A discontinuous shell-interface element for delamination analysis of laminated composite structures, Comput. Methods Appl. Mech. Engrg., 193, 30, 3173-3194 (2004) · Zbl 1085.74043
[16] Ahmed, A.; Van der Meer, F.; Sluys, L., A geometrically nonlinear discontinuous solid-like shell element (DSLS) for thin shell structures, Comput. Methods Appl. Mech. Eng., 201, 191-207 (2012) · Zbl 1239.74049
[17] J. Brouzoulis, M. Fagerström, Modelling of multiple delaminations in shells using XFEM, in: Proceedings for the 19th international conference on composite materials, ICCM19, 2013.; J. Brouzoulis, M. Fagerström, Modelling of multiple delaminations in shells using XFEM, in: Proceedings for the 19th international conference on composite materials, ICCM19, 2013.
[18] Brouzoulis, J.; Fagerström, M., An enriched shell element formulation for efficient modeling of multiple delamination propagation in laminates, Compos. Struct., 126, 196-206 (2015)
[19] McElroy, M.; Gutkin, R.; Pankow, M., Interaction of delaminations and matrix cracks in a CFRP plate, Part II: Simulation using an enriched shell finite element model, Composites A, 103, 252-262 (2017)
[20] Reinoso, J.; Blázquez, A.; Estefani, A.; París, F.; Cañas, J.; Arévalo, E.; Cruz, F., Experimental and three-dimensional global-local finite element analysis of a composite component including degradation process at the interfaces, Composites B, 43, 4, 1929-1942 (2012)
[21] Reinoso, J.; Blázquez, A.; Estefani, A.; París, F.; Canas, J., A composite runout specimen subjected to tension-compression loading conditions: Experimental and global-local finite element analysis, Compos. Struct., 101, 274-289 (2013)
[22] Sato, Y.; Okabe, T.; Higuchi, R.; Yoshioka, K., Multiscale approach to predict crack initiation in unidirectional off-axis laminates, Adv. Compos. Mater, 23, 5-6, 461-475 (2014)
[23] Akterskaia, M.; Jansen, E.; Hühne, S.; Rolfes, R., Efficient progressive failure analysis of multi-stringer stiffened composite panels through a two-way loose coupling global-local approach, Compos. Struct., 183, 137-145 (2018)
[24] Paggi, M.; Corrado, M.; Berardone, I., A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads, Eng. Fract. Mech., 168, 40-57 (2016)
[25] Hühne, S.; Reinoso, J.; Jansen, E.; Rolfes, R., A two-way loose coupling procedure for investigating the buckling and damage behaviour of stiffened composite panels, Compos. Struct., 136, 513-525 (2016)
[26] Geers, M. G.; Kouznetsova, V. G.; Matouš, K.; Yvonnet, J., (Homogenization Methods and Multiscale Modeling: Nonlinear Problems. Homogenization Methods and Multiscale Modeling: Nonlinear Problems, Encyclopedia of Computational Mechanics (2017)), 1-34
[27] Fish, J., Bridging the scales in nano engineering and science, J. Nanopart. Res., 8, 5, 577-594 (2006)
[28] Fish, J., Multiscale Methods: Bridging the Scales in Science and Engineering (2010), Oxford University Press on Demand · Zbl 1205.65009
[29] Kanouté, P.; Boso, D.; Chaboche, J.; Schrefler, B., Multiscale methods for composites: a review, Arch. Comput. Methods Eng., 16, 1, 31-75 (2009) · Zbl 1170.74304
[30] McCune, R.; Armstrong, C.; Robinson, D., Mixed-dimensional coupling in finite element models, Internat. J. Numer. Methods Engrg., 49, 6, 725-750 (2000) · Zbl 0967.74067
[31] Krueger, R.; Ratcliffe, J.; Minguet, P., Panel stiffener debonding analysis using a shell/3D modeling technique, Compos. Sci. Technol., 69, 14, 2352-2362 (2009)
[32] Krueger, R.; O’Brien, T., A shell/3d modeling technique for the analysis of delaminated composite laminates, Composites A, 32, 1, 25-44 (2001)
[33] Dhia, H. B.; Rateau, G., The arlequin method as a flexible engineering design tool, Internat. J. Numer. Methods Engrg., 62, 11, 1442-1462 (2005) · Zbl 1084.74049
[34] Gigliotti, L.; Pinho, S., Multiple length/time-scale simulation of localized damage in composite structures using a mesh superposition technique, Compos. Struct., 121, 395-405 (2015)
[35] Budarapu, P. R.; Gracie, R.; Bordas, S. P.; Rabczuk, T., An adaptive multiscale method for quasi-static crack growth, Comput. Mech., 53, 6, 1129-1148 (2014)
[36] Talebi, H.; Silani, M.; Bordas, S. P.; Kerfriden, P.; Rabczuk, T., A computational library for multiscale modeling of material failure, Comput. Mech., 53, 5, 1047-1071 (2014)
[37] Talebi, H.; Silani, M.; Rabczuk, T., Concurrent multiscale modeling of three dimensional crack and dislocation propagation, Adv. Eng. Softw., 80, 82-92 (2015)
[38] Budarapu, P. R.; Reinoso, J.; Paggi, M., Concurrently coupled solid shell-based adaptive multiscale method for fracture, Comput. Methods Appl. Mech. Engrg., 319, 338-365 (2017) · Zbl 1439.74345
[39] Xiao, S.; Belytschko, T., A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg., 193, 17-20, 1645-1669 (2004) · Zbl 1079.74509
[40] T. Belytschko, S. Xiao, Coupling methods for continuum model with molecular model, Int. J. Multiscale Comput. Eng. 1 (1).; T. Belytschko, S. Xiao, Coupling methods for continuum model with molecular model, Int. J. Multiscale Comput. Eng. 1 (1).
[41] Wilmes, A. A.; Pinho, S. T., A coupled mechanical-charge/dipole molecular dynamics finite element method, with multi-scale applications to the design of graphene nano-devices, Internat. J. Numer. Methods Engrg., 100, 4, 243-276 (2014) · Zbl 1352.82022
[42] Lee, Y.; Basaran, C., A multiscale modeling technique for bridging molecular dynamics with finite element method, J. Comput. Phys., 253, 64-85 (2013) · Zbl 1349.82095
[43] Rojek, J.; Oñate, E., Multiscale analysis using a coupled discrete/finite element model, Interact. Multiscale Mech., 1, 1, 1-31 (2007)
[44] Chen, B.; Pinho, S.; De Carvalho, N.; Baiz, P.; Tay, T., A floating node method for the modelling of discontinuities in composites, Eng. Fract. Mech., 127, 104-134 (2014)
[45] Chen, B.; Tay, T.; Pinho, S.; Tan, V., Modelling the tensile failure of composites with the floating node method, Comput. Methods Appl. Mech. Engrg., 308, 414-442 (2016) · Zbl 1439.74092
[46] J. Ratcliffe, M. Czabaj, T. O’Brien, A test for characterizing delamination migration in carbon/epoxy tape laminates, NASA/TM-2013-218028, NASA, 2013.; J. Ratcliffe, M. Czabaj, T. O’Brien, A test for characterizing delamination migration in carbon/epoxy tape laminates, NASA/TM-2013-218028, NASA, 2013.
[47] De Carvalho, N.; Chen, B.; Pinho, S.; Ratcliffe, J.; Baiz, P.; Tay, T., Modeling delamination migration in cross-ply tape laminates, Composites A, 71, 192-203 (2015)
[48] Chen, B.; Tay, T.; Pinho, S.; Tan, V., Modelling delamination migration in angle-ply laminates, Compos. Sci. Technol., 142, 145-155 (2017)
[49] Lu, X.; Chen, B.; Tan, V.; Tay, T., Adaptive floating node method for modelling cohesive fracture of composite materials, Eng. Fract. Mech., 194, 240-261 (2018)
[50] Lu, X.; Chen, B.; Tan, V.; Tay, T., A separable cohesive element for modelling coupled failure in laminated composite materials, Composites A, 107, 387-398 (2018)
[51] Krueger, R., Virtual crack closure technique: history, approach, and applications, Appl. Mech. Rev., 57, 2, 109-143 (2004)
[52] M. Ortiz, A. Pandolfi, Caltech asci technical report 090, Internat. J. Numer. Methods Engrg. 44.; M. Ortiz, A. Pandolfi, Caltech asci technical report 090, Internat. J. Numer. Methods Engrg. 44.
[53] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[54] Gigliotti, L., Multiscale analysis of damage-tolerant composite sandwich structures (2016), Imperial College London, (Ph.D thesis)
[55] R. Krueger, Development and application of benchmark examples for mixed-mode I/II quasi-static delamination propagation predictions, NASA/CR-2012-217562, NASA, 2012.; R. Krueger, Development and application of benchmark examples for mixed-mode I/II quasi-static delamination propagation predictions, NASA/CR-2012-217562, NASA, 2012.
[56] Williams, J., The fracture mechanics of delamination tests, J. Strain Anal. Eng. Des., 24, 4, 207-214 (1989)
[57] Turon, A.; Camanho, P.; Costa, J.; Renart, J., Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness, Compos. Struct., 92, 8, 1857-1864 (2010)
[58] Hutchinson, J.; Suo, Z., Mixed mode cracking in layered materials, (Advances in Applied Mechanics, vol. 29 (1991), Elsevier), 63-191 · Zbl 0790.73056
[59] Pinho, S.; Robinson, P.; Iannucci, L., Developing a four point bend specimen to measure the mode I intralaminar fracture toughness of unidirectional laminated composites, Compos. Sci. Technol., 69, 7, 1303-1309 (2009)
[60] Pinho, S. T.; Robinson, P.; Iannucci, L., Fracture toughness of the tensile and compressive fibre failure modes in laminated composites, Compos. Sci. Technol., 66, 13, 2069-2079 (2006)
[61] McElroy, M., Use of an enriched shell finite element to simulate delamination-migration in a composite laminate, Compos. Struct., 167, 88-95 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.