Sim, Inbo; Son, Byungjae Positive solutions to classes of infinite semipositone \((p,q)\)-Laplace problems with nonlinear boundary conditions. (English) Zbl 07309685 J. Math. Anal. Appl. 494, No. 1, Article ID 124577, 11 p. (2021). MSC: 34B18 47N20 PDF BibTeX XML Cite \textit{I. Sim} and \textit{B. Son}, J. Math. Anal. Appl. 494, No. 1, Article ID 124577, 11 p. (2021; Zbl 07309685) Full Text: DOI
Fang, Xiang-Dong Multiple solutions of higher topological type for semiclassical nonlinear Schrödinger equations. (English) Zbl 07309485 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021). MSC: 35J20 35J60 49J35 PDF BibTeX XML Cite \textit{X.-D. Fang}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021; Zbl 07309485) Full Text: DOI
Wang, Fuliang; Die, Hu; Xiang, Mingqi Combined effects of logarithmic and superlinear nonlinearities in fractional Laplacian systems. (English) Zbl 07301274 Anal. Math. Phys. 11, No. 1, Paper No. 9, 34 p. (2021). MSC: 35R11 35J57 47G20 PDF BibTeX XML Cite \textit{F. Wang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 9, 34 p. (2021; Zbl 07301274) Full Text: DOI
Shakerian, Shaya Multiple positive solutions for nonlocal elliptic problems involving the Hardy potential and concave-convex nonlinearities. (English) Zbl 07298839 Commun. Contemp. Math. 23, No. 2, Article ID 2050008, 30 p. (2021). MSC: 35J20 35S15 49J35 PDF BibTeX XML Cite \textit{S. Shakerian}, Commun. Contemp. Math. 23, No. 2, Article ID 2050008, 30 p. (2021; Zbl 07298839) Full Text: DOI
Furtado, Marcelo Fernandes; de Sousa, Karla Carolina Vicente Multiplicity of solutions for a nonlinear boundary value problem in the upper half-space. (English) Zbl 07267869 J. Math. Anal. Appl. 493, No. 2, Article ID 124544, 21 p. (2021). MSC: 35J61 35J25 35A01 PDF BibTeX XML Cite \textit{M. F. Furtado} and \textit{K. C. V. de Sousa}, J. Math. Anal. Appl. 493, No. 2, Article ID 124544, 21 p. (2021; Zbl 07267869) Full Text: DOI
Tellini, Andrea Numerical global bifurcation diagrams for a superlinear indefinite problem with a parameter appearing in the domain. (English) Zbl 07312832 Rend. Ist. Mat. Univ. Trieste 52, 289-309 (2020). MSC: 65L10 65L60 65P30 65L07 PDF BibTeX XML Cite \textit{A. Tellini}, Rend. Ist. Mat. Univ. Trieste 52, 289--309 (2020; Zbl 07312832) Full Text: DOI
Guefaifia, Rafik; Boulaaras, Salah; Zuo, Jiabin; Agarwal, Praveen Existence and multiplicity of positive weak solutions for a new class of (p; q)-Laplacian systems. (English) Zbl 07307842 Miskolc Math. Notes 21, No. 2, 861-872 (2020). MSC: 35J60 35B30 35B40 PDF BibTeX XML Cite \textit{R. Guefaifia} et al., Miskolc Math. Notes 21, No. 2, 861--872 (2020; Zbl 07307842) Full Text: DOI
Pandurangi, Shrinidhi S.; Elliott, Ryan S.; Healey, Timothy J.; Triantafyllidis, Nicolas Stable spatially localized configurations in a simple structure – a global symmetry-breaking approach. (English) Zbl 07305654 J. Elasticity 142, No. 1, 163-199 (2020). MSC: 37G40 37M20 58E09 70H33 74B20 74G35 74G60 74G65 74K10 PDF BibTeX XML Cite \textit{S. S. Pandurangi} et al., J. Elasticity 142, No. 1, 163--199 (2020; Zbl 07305654) Full Text: DOI
Pei, Ruichang Multiple solutions for a fractional \(p\)-Laplacian equation with concave nonlinearities. (English) Zbl 07295601 J. Partial Differ. Equations 33, No. 2, 93-108 (2020). MSC: 35J60 35R11 35A15 PDF BibTeX XML Cite \textit{R. Pei}, J. Partial Differ. Equations 33, No. 2, 93--108 (2020; Zbl 07295601) Full Text: DOI
Fonseka, Nalin; Shivaji, Ratnasingham; Goddard, Jerome II; Morris, Quinn A.; Son, Byungjae On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model. (English) Zbl 07292998 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3401-3415 (2020). MSC: 35J91 35J66 35A01 35A02 92D25 PDF BibTeX XML Cite \textit{N. Fonseka} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3401--3415 (2020; Zbl 07292998) Full Text: DOI
Tudorache, Alexandru; Luca, Rodica Positive solutions for a singular fractional boundary value problem. (English) Zbl 07292727 Math. Methods Appl. Sci. 43, No. 17, 10190-10203 (2020). MSC: 34A08 34B15 34B10 34B18 34B16 45G15 PDF BibTeX XML Cite \textit{A. Tudorache} and \textit{R. Luca}, Math. Methods Appl. Sci. 43, No. 17, 10190--10203 (2020; Zbl 07292727) Full Text: DOI
Escudero, Carlos Kinetic energy of the Langevin particle. (English) Zbl 07288989 Stud. Appl. Math. 145, No. 4, 719-738 (2020). MSC: 60 65 PDF BibTeX XML Cite \textit{C. Escudero}, Stud. Appl. Math. 145, No. 4, 719--738 (2020; Zbl 07288989) Full Text: DOI
Liu, Wulong; Dai, Guowei Multiplicity results for double phase problems in \(\mathbb{R}^N\). (English) Zbl 07287227 J. Math. Phys. 61, No. 9, 091508, 20 p. (2020). MSC: 74E10 74G35 74G65 35Q74 35J20 PDF BibTeX XML Cite \textit{W. Liu} and \textit{G. Dai}, J. Math. Phys. 61, No. 9, 091508, 20 p. (2020; Zbl 07287227) Full Text: DOI
Zhou, Xin On the multiplicity one conjecture in min-max theory. (English) Zbl 07285354 Ann. Math. (2) 192, No. 3, 767-820 (2020). MSC: 53C42 58E12 49Q05 49J35 PDF BibTeX XML Cite \textit{X. Zhou}, Ann. Math. (2) 192, No. 3, 767--820 (2020; Zbl 07285354) Full Text: DOI
Taarabti, S.; El Allali, Z.; Haddouch, K. Ben On the \(p(X)\)-Kirchhoff-type equation involving the \(p(X)\)-biharmonic operator via the genus theory. (English) Zbl 07282470 Ukr. Math. J. 72, No. 6, 978-989 (2020) and Ukr. Mat. Zh. 72, No. 6, 842-851 (2020). MSC: 35J92 35J25 35A01 PDF BibTeX XML Cite \textit{S. Taarabti} et al., Ukr. Math. J. 72, No. 6, 978--989 (2020; Zbl 07282470) Full Text: DOI
Marques, Fernando C.; Neves, André Applications of min-max methods to geometry. (English) Zbl 07278270 Gursky, Matthew J. (ed.) et al., Geometric analysis. Cetraro, Italy, June 18–22, 2018. Lecture notes given at the summer school. Cham: Springer (ISBN 978-3-030-53724-1/pbk; 978-3-030-53725-8/ebook). Lecture Notes in Mathematics 2263. C.I.M.E. Foundation Subseries, 41-77 (2020). MSC: 53-02 53C42 49Q15 49J35 PDF BibTeX XML Cite \textit{F. C. Marques} and \textit{A. Neves}, Lect. Notes Math. 2263, 41--77 (2020; Zbl 07278270) Full Text: DOI
Hu, Bingzhong; Yang, Yang A note on the combination between local and nonlocal \(p\)-Laplacian operators. (English) Zbl 07272128 Complex Var. Elliptic Equ. 65, No. 10, 1763-1776 (2020). MSC: 35J92 35B32 35A01 PDF BibTeX XML Cite \textit{B. Hu} and \textit{Y. Yang}, Complex Var. Elliptic Equ. 65, No. 10, 1763--1776 (2020; Zbl 07272128) Full Text: DOI
Saoudi, K.; Ghanmi, A.; Horrigue, S. Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity. (English) Zbl 07270935 J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1743-1756 (2020). MSC: 35J05 35R11 35A01 PDF BibTeX XML Cite \textit{K. Saoudi} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1743--1756 (2020; Zbl 07270935) Full Text: DOI
Corsato, Chiara; De Coster, Colette; Obersnel, Franco; Omari, Pierpaolo Qualitative analysis of a curvature equation modelling MEMS with vertical loads. (English) Zbl 07269751 Nonlinear Anal., Real World Appl. 55, Article ID 103123, 49 p. (2020). MSC: 35J62 35J93 35J25 PDF BibTeX XML Cite \textit{C. Corsato} et al., Nonlinear Anal., Real World Appl. 55, Article ID 103123, 49 p. (2020; Zbl 07269751) Full Text: DOI
Arora, R.; Giacomoni, J.; Goel, D.; Sreenadh, K. Positive solutions of 1-D half Laplacian equation with singular and exponential nonlinearity. (English) Zbl 07268674 Asymptotic Anal. 118, No. 1-2, 1-34 (2020). MSC: 35J05 35R11 35B09 35B40 35B65 35A01 PDF BibTeX XML Cite \textit{R. Arora} et al., Asymptotic Anal. 118, No. 1--2, 1--34 (2020; Zbl 07268674) Full Text: DOI
Sugie, Jitsuro; Yan, Yan Existence of multiple positive periodic solutions for discrete hematopoiesis models with a unimodal production function. (English) Zbl 1451.37113 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105273, 16 p. (2020). MSC: 37N25 39A23 39A60 92C37 PDF BibTeX XML Cite \textit{J. Sugie} and \textit{Y. Yan}, Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105273, 16 p. (2020; Zbl 1451.37113) Full Text: DOI
Wu, Dong-Lun; Li, Fengying Solutions for fourth-order Kirchhoff type elliptic equations involving concave-convex nonlinearities in \(\mathbb{R}^N\). (English) Zbl 1448.35252 Comput. Math. Appl. 79, No. 2, 489-499 (2020). MSC: 35J91 35A01 35J35 PDF BibTeX XML Cite \textit{D.-L. Wu} and \textit{F. Li}, Comput. Math. Appl. 79, No. 2, 489--499 (2020; Zbl 1448.35252) Full Text: DOI
Belaouidel, Hassan; Ourraoui, Anass; Tsouli, Najib General quasilinear problems involving \(p(x)\)-Laplacian with Robin boundary condition. (English) Zbl 1448.35255 Ural Math. J. 6, No. 1, 30-41 (2020). MSC: 35J92 35A01 35A15 PDF BibTeX XML Cite \textit{H. Belaouidel} et al., Ural Math. J. 6, No. 1, 30--41 (2020; Zbl 1448.35255) Full Text: DOI MNR
Uta, Vasile On the existence and multiplicity of eigenvalues for a class of double-phase non-autonomous problems with variable exponent growth. (English) Zbl 07254938 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 28, 22 p. (2020). MSC: 35P30 49R05 58C40 PDF BibTeX XML Cite \textit{V. Uta}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 28, 22 p. (2020; Zbl 07254938) Full Text: DOI
Benaissa, A.; Matallah, A. Nonhomogeneous elliptic Kirchhoff equations of the \(p\)-Laplacian type. (English) Zbl 1448.35256 Ukr. Math. J. 72, No. 2, 203-210 (2020) and Ukr. Mat. Zh. 72, No. 2, 184-190 (2020). MSC: 35J92 35B33 35A01 PDF BibTeX XML Cite \textit{A. Benaissa} and \textit{A. Matallah}, Ukr. Math. J. 72, No. 2, 203--210 (2020; Zbl 1448.35256) Full Text: DOI
Duan, Huagui; Long, Yiming; Zhu, Chaofeng Index iteration theories for periodic orbits: old and new. (English) Zbl 07249026 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111999, 26 p. (2020). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 37J46 37J25 37J11 37J39 37C55 58E05 58E10 PDF BibTeX XML Cite \textit{H. Duan} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111999, 26 p. (2020; Zbl 07249026) Full Text: DOI
Bobkov, Vladimir; Drábek, Pavel; Hernández, Jesús Existence and multiplicity results for a class of semilinear elliptic equations. (English) Zbl 07248584 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112017, 24 p. (2020). MSC: 35J91 35A01 35A02 35B09 PDF BibTeX XML Cite \textit{V. Bobkov} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112017, 24 p. (2020; Zbl 07248584) Full Text: DOI
Zhang, Jian; Tang, Xianhua; Zhao, Fukun On multiplicity and concentration of solutions for a gauged nonlinear Schrödinger equation. (English) Zbl 1448.35133 Appl. Anal. 99, No. 12, 2001-2012 (2020). MSC: 35J10 35Q55 35A01 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Anal. 99, No. 12, 2001--2012 (2020; Zbl 1448.35133) Full Text: DOI
Zhang, Wei; Liu, Wenbin Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval. (English) Zbl 1452.34017 Math. Methods Appl. Sci. 43, No. 5, 2251-2275 (2020). MSC: 34A08 34B10 34B18 34B40 34A45 47N20 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{W. Liu}, Math. Methods Appl. Sci. 43, No. 5, 2251--2275 (2020; Zbl 1452.34017) Full Text: DOI
Li, Wen-Long; Cui, Xiaojun Multitransition solutions for a generalized Frenkel-Kontorova model. (English) Zbl 07243508 Discrete Contin. Dyn. Syst. 40, No. 11, 6135-6158 (2020). MSC: 70G75 74G22 74G35 PDF BibTeX XML Cite \textit{W.-L. Li} and \textit{X. Cui}, Discrete Contin. Dyn. Syst. 40, No. 11, 6135--6158 (2020; Zbl 07243508) Full Text: DOI
Boscaggin, Alberto; Feltrin, Guglielmo; Sovrano, Elisa High multiplicity and chaos for an indefinite problem arising from genetic models. (English) Zbl 1452.34032 Adv. Nonlinear Stud. 20, No. 3, 675-699 (2020). Reviewer: Bertin Zinsou (Johannesburg) MSC: 34B08 34B18 47N20 34C28 PDF BibTeX XML Cite \textit{A. Boscaggin} et al., Adv. Nonlinear Stud. 20, No. 3, 675--699 (2020; Zbl 1452.34032) Full Text: DOI
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D. Existence and multiplicity of solutions for double-phase Robin problems. (English) Zbl 1447.35131 Bull. Lond. Math. Soc. 52, No. 3, 546-560 (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J25 35J60 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Bull. Lond. Math. Soc. 52, No. 3, 546--560 (2020; Zbl 1447.35131) Full Text: DOI
Hamdani, Mohamed Karim; Repovš, Dušan D. Existence of solutions for systems arising in electromagnetism. (English) Zbl 1444.78010 J. Math. Anal. Appl. 486, No. 2, Article ID 123898, 17 p. (2020). MSC: 78M30 35Q60 35A15 35A01 35J92 PDF BibTeX XML Cite \textit{M. K. Hamdani} and \textit{D. D. Repovš}, J. Math. Anal. Appl. 486, No. 2, Article ID 123898, 17 p. (2020; Zbl 1444.78010) Full Text: DOI
Naimen, Daisuke; Shibata, Masataka Existence and multiplicity of positive solutions of a critical Kirchhoff type elliptic problem in dimension four. (English) Zbl 07217171 Differ. Integral Equ. 33, No. 5-6, 223-246 (2020). Reviewer: Giovanni Anello (Messina) MSC: 35J20 35J25 35J62 PDF BibTeX XML Cite \textit{D. Naimen} and \textit{M. Shibata}, Differ. Integral Equ. 33, No. 5--6, 223--246 (2020; Zbl 07217171)
Ricceri, Biagio Miscellaneous applications of certain minimax theorems II. (English) Zbl 1443.49016 Acta Math. Vietnam. 45, No. 2, 515-524 (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 49J35 35J92 49J45 49K27 49K35 90C47 PDF BibTeX XML Cite \textit{B. Ricceri}, Acta Math. Vietnam. 45, No. 2, 515--524 (2020; Zbl 1443.49016) Full Text: DOI
Ji, Chao; Rădulescu, Vicenţiu D. Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation. (English) Zbl 1444.35064 Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 115, 28 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35B33 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 115, 28 p. (2020; Zbl 1444.35064) Full Text: DOI
Xiang, Mingqi; Zhang, Binlin Homoclinic solutions for fractional discrete Laplacian equations. (English) Zbl 1441.35260 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111886, 14 p. (2020). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35R11 49M25 35K05 PDF BibTeX XML Cite \textit{M. Xiang} and \textit{B. Zhang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111886, 14 p. (2020; Zbl 1441.35260) Full Text: DOI
Boscaggin, Alberto; Colasuonno, Francesca; Noris, Benedetta Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. (English) Zbl 1444.35072 Discrete Contin. Dyn. Syst., Ser. S 13, No. 7, 1921-1933 (2020). Reviewer: Guglielmo Feltrin (Spilimbergo) MSC: 35J62 35B05 35A24 35B09 PDF BibTeX XML Cite \textit{A. Boscaggin} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 7, 1921--1933 (2020; Zbl 1444.35072) Full Text: DOI
Ascanelli, Alessia; Coriasco, Sandro; Süss, André Random-field solutions of weakly hyperbolic stochastic partial differential equations with polynomially bounded coefficients. (English) Zbl 1452.35263 J. Pseudo-Differ. Oper. Appl. 11, No. 1, 387-424 (2020). Reviewer: Luigi Rodino (Torino) MSC: 35R60 35L10 60H15 35L40 35S30 35A08 PDF BibTeX XML Cite \textit{A. Ascanelli} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 1, 387--424 (2020; Zbl 1452.35263) Full Text: DOI
López-Martínez, Salvador A singularity as a break point for the multiplicity of solutions to quasilinear elliptic problems. (English) Zbl 1436.35178 Adv. Nonlinear Anal. 9, 1351-1382 (2020). MSC: 35J62 35A01 35A02 35J25 35J75 PDF BibTeX XML Cite \textit{S. López-Martínez}, Adv. Nonlinear Anal. 9, 1351--1382 (2020; Zbl 1436.35178) Full Text: DOI
Boscaggin, Alberto; Colasuonno, Francesca; Noris, Benedetta A priori bounds and multiplicity of positive solutions for \(p\)-Laplacian Neumann problems with sub-critical growth. (English) Zbl 1436.35204 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 73-102 (2020). MSC: 35J92 35B05 35B09 35B45 PDF BibTeX XML Cite \textit{A. Boscaggin} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 1, 73--102 (2020; Zbl 1436.35204) Full Text: DOI
Feltrin, Guglielmo; Gidoni, Paolo Multiplicity of clines for systems of indefinite differential equations arising from a multilocus population genetics model. (English) Zbl 1441.34033 Nonlinear Anal., Real World Appl. 54, Article ID 103108, 19 p. (2020). Reviewer: Yanqiong Lu (Lanzhou) MSC: 34B09 34B18 47N20 92D10 34B08 PDF BibTeX XML Cite \textit{G. Feltrin} and \textit{P. Gidoni}, Nonlinear Anal., Real World Appl. 54, Article ID 103108, 19 p. (2020; Zbl 1441.34033) Full Text: DOI
Tayachi, Slim Uniqueness and non-uniqueness of solutions for critical Hardy-Hénon parabolic equations. (English) Zbl 1437.35437 J. Math. Anal. Appl. 488, No. 1, Article ID 123976, 51 p. (2020). MSC: 35K91 35A02 35K67 46E30 PDF BibTeX XML Cite \textit{S. Tayachi}, J. Math. Anal. Appl. 488, No. 1, Article ID 123976, 51 p. (2020; Zbl 1437.35437) Full Text: DOI
Nornberg, Gabrielle; Schiera, Delia; Sirakov, Boyan A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. (English) Zbl 1444.35122 Discrete Contin. Dyn. Syst. 40, No. 6, 3857-3881 (2020). Reviewer: Petr Tomiczek (Plzeň) MSC: 35P30 35J60 35J66 35A01 35A16 35J57 35B45 35D40 35B32 PDF BibTeX XML Cite \textit{G. Nornberg} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3857--3881 (2020; Zbl 1444.35122) Full Text: DOI
Li, Gongbao; Luo, Xiao Existence and multiplicity of normalized solutions for a class of fractional Choquard equations. (English) Zbl 1437.35302 Sci. China, Math. 63, No. 3, 539-558 (2020). MSC: 35J60 35R11 35A15 PDF BibTeX XML Cite \textit{G. Li} and \textit{X. Luo}, Sci. China, Math. 63, No. 3, 539--558 (2020; Zbl 1437.35302) Full Text: DOI
Lee, Yong-Hoon; Xu, Xianghui Existence and multiplicity results for generalized Laplacian problems with a parameter. (English) Zbl 07173773 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 403-424 (2020). MSC: 34B16 34B18 34B09 47N20 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{X. Xu}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 403--424 (2020; Zbl 07173773) Full Text: DOI
Liu, Peng; Guo, Fei Multiplicity of periodic solutions for second order Hamiltonian systems with asymptotically quadratic conditions. (English) Zbl 1430.37066 Acta Math. Sin., Engl. Ser. 36, No. 1, 55-65 (2020). MSC: 37J46 70H12 PDF BibTeX XML Cite \textit{P. Liu} and \textit{F. Guo}, Acta Math. Sin., Engl. Ser. 36, No. 1, 55--65 (2020; Zbl 1430.37066) Full Text: DOI
Chodosh, Otis; Mantoulidis, Christos Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates. (English) Zbl 1431.49045 Ann. Math. (2) 191, No. 1, 213-328 (2020). MSC: 49Q05 49J35 49J20 PDF BibTeX XML Cite \textit{O. Chodosh} and \textit{C. Mantoulidis}, Ann. Math. (2) 191, No. 1, 213--328 (2020; Zbl 1431.49045) Full Text: DOI arXiv
Poláčik, P.; Quittner, P. On the multiplicity of self-similar solutions of the semilinear heat equation. (English) Zbl 1428.35170 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111639, 23 p. (2020). MSC: 35K57 35C06 35B44 35J61 PDF BibTeX XML Cite \textit{P. Poláčik} and \textit{P. Quittner}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111639, 23 p. (2020; Zbl 1428.35170) Full Text: DOI
Cabada, Alberto; Jebari, Rochdi Multiplicity results for fourth order problems related to the theory of deformations beams. (English) Zbl 07151745 Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 489-505 (2020). MSC: 34B15 34B27 34B09 34B10 34B18 47B20 PDF BibTeX XML Cite \textit{A. Cabada} and \textit{R. Jebari}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 489--505 (2020; Zbl 07151745) Full Text: DOI
Wang, Li-Li Multiple positive solutions for a kind of singular Schrödinger-Poisson system. (English) Zbl 1433.35062 Appl. Anal. 99, No. 2, 270-284 (2020). MSC: 35J47 35J91 35B09 35J20 PDF BibTeX XML Cite \textit{L.-L. Wang}, Appl. Anal. 99, No. 2, 270--284 (2020; Zbl 1433.35062) Full Text: DOI
Hao, Zhiwei; Jiang, Wenrong; Li, Nan; Zhi, Lihong On isolation of simple multiple zeros and clusters of zeros of polynomial systems. (English) Zbl 07146720 Math. Comput. 89, No. 322, 879-909 (2020). MSC: 65H10 74G35 68W30 32-04 32S99 PDF BibTeX XML Cite \textit{Z. Hao} et al., Math. Comput. 89, No. 322, 879--909 (2020; Zbl 07146720) Full Text: DOI
Chen, Yu; Ding, Yanheng; Xu, Tian Potential well and multiplicity of solutions for nonlinear Dirac equations. (English) Zbl 1428.35420 Commun. Pure Appl. Anal. 19, No. 1, 587-607 (2020). MSC: 35Q40 49J35 35A15 58E05 PDF BibTeX XML Cite \textit{Y. Chen} et al., Commun. Pure Appl. Anal. 19, No. 1, 587--607 (2020; Zbl 1428.35420) Full Text: DOI
Ricceri, Biagio Another multiplicity result for the periodic solutions of certain systems. (English) Zbl 07313278 Linear Nonlinear Anal. 5, No. 3, 371-378 (2019). MSC: 34C25 49J35 49J40 PDF BibTeX XML Cite \textit{B. Ricceri}, Linear Nonlinear Anal. 5, No. 3, 371--378 (2019; Zbl 07313278) Full Text: Link
Ma, Mantang; Jia, Kaijun Existence and multiplicity of positive solutions for a class of second-order boundary value problems. (Chinese. English summary) Zbl 1449.34082 J. Sichuan Univ., Nat. Sci. Ed. 56, No. 6, 1014-1018 (2019). MSC: 34B18 47N20 PDF BibTeX XML Cite \textit{M. Ma} and \textit{K. Jia}, J. Sichuan Univ., Nat. Sci. Ed. 56, No. 6, 1014--1018 (2019; Zbl 1449.34082) Full Text: DOI
Wu, Xiaojie; Xu, Yumei The formation of singularity for the classical solutions to the quasilinear hyperbolic systems with characteristics with constant multiplicity. (Chinese. English summary) Zbl 1449.35005 J. Qufu Norm. Univ., Nat. Sci. 45, No. 4, 23-28 (2019). MSC: 35A09 35L72 35B44 PDF BibTeX XML Cite \textit{X. Wu} and \textit{Y. Xu}, J. Qufu Norm. Univ., Nat. Sci. 45, No. 4, 23--28 (2019; Zbl 1449.35005) Full Text: DOI
Sun, Rui; Zhou, Wenxue Existence of multiple positive solutions for a class of fractional differential equations with integral boundary value conditions. (Chinese. English summary) Zbl 1449.34086 J. Anhui Norm. Univ., Nat. Sci. 42, No. 4, 322-327, 340 (2019). MSC: 34B18 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{R. Sun} and \textit{W. Zhou}, J. Anhui Norm. Univ., Nat. Sci. 42, No. 4, 322--327, 340 (2019; Zbl 1449.34086) Full Text: DOI
Goodrich, Christopher S. Coercive functionals and their relationship to multiplicity of solution to nonlocal boundary value problems. (English) Zbl 1436.45005 Topol. Methods Nonlinear Anal. 54, No. 2A, 409-426 (2019). Reviewer: Stepan Agop Tersian (Rousse) MSC: 45G10 45M20 34B10 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Topol. Methods Nonlinear Anal. 54, No. 2A, 409--426 (2019; Zbl 1436.45005) Full Text: DOI Euclid
Dai, Guowei Bifurcation and standing wave solutions for a quasilinear Schrödinger equation. (English) Zbl 1437.35051 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 939-968 (2019). MSC: 35B32 35J62 35J25 35P30 35B09 PDF BibTeX XML Cite \textit{G. Dai}, Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 939--968 (2019; Zbl 1437.35051) Full Text: DOI
Huang, Delong; Guo, Fei Multiplicity of periodic solutions for a class of non-autonomous second-order Hamiltonian systems. (Chinese. English summary) Zbl 1449.37043 Acta Sci. Nat. Univ. Nankaiensis 52, No. 4, 57-61 (2019). MSC: 37J46 37J51 PDF BibTeX XML Cite \textit{D. Huang} and \textit{F. Guo}, Acta Sci. Nat. Univ. Nankaiensis 52, No. 4, 57--61 (2019; Zbl 1449.37043)
Gu, Guangze; Tang, Xianhua The concentration behavior of ground states for a class of Kirchhoff-type problems with Hartree-type nonlinearity. (English) Zbl 1427.35050 Adv. Nonlinear Stud. 19, No. 4, 779-795 (2019). MSC: 35J60 35B25 35B40 35J20 PDF BibTeX XML Cite \textit{G. Gu} and \textit{X. Tang}, Adv. Nonlinear Stud. 19, No. 4, 779--795 (2019; Zbl 1427.35050) Full Text: DOI
Bae, Soohyun Infinite multiplicity of stable entire solutions for a semilinear elliptic equation with exponential nonlinearity. (English) Zbl 1435.35168 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 5, 1371-1404 (2019). Reviewer: Fukun Zhao (Kunming) MSC: 35J61 35B08 35B35 35B40 PDF BibTeX XML Cite \textit{S. Bae}, Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 5, 1371--1404 (2019; Zbl 1435.35168) Full Text: DOI
Lee, Yong-Hoon; Xu, Xianghui Multiplicity results of positive solutions for singular generalized Laplacian systems. (English) Zbl 1434.34031 J. Korean Math. Soc. 56, No. 5, 1309-1331 (2019). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B16 34B18 47N20 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{X. Xu}, J. Korean Math. Soc. 56, No. 5, 1309--1331 (2019; Zbl 1434.34031) Full Text: DOI
Feltrin, Guglielmo; Sovrano, Elisa; Zanolin, Fabio Periodic solutions to parameter-dependent equations with a \(\phi\)-Laplacian type operator. (English) Zbl 1434.34037 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 5, Paper No. 38, 27 p. (2019). Reviewer: Alessandro Fonda (Trieste) MSC: 34C25 34B08 47N20 PDF BibTeX XML Cite \textit{G. Feltrin} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 5, Paper No. 38, 27 p. (2019; Zbl 1434.34037) Full Text: DOI arXiv
Santos, Andrelino V.; Santos Júnior, João R. Multiple solutions for a generalised Schrödinger problem with “concave-convex” nonlinearities. (English) Zbl 1427.35024 Z. Angew. Math. Phys. 70, No. 5, Paper No. 156, 19 p. (2019). MSC: 35J10 35J25 35J60 PDF BibTeX XML Cite \textit{A. V. Santos} and \textit{J. R. Santos Júnior}, Z. Angew. Math. Phys. 70, No. 5, Paper No. 156, 19 p. (2019; Zbl 1427.35024) Full Text: DOI
dos Santos, Gelson; Figueiredo, Giovany M.; Severo, Uberlandio B. Multiple solutions for a class of singular quasilinear problems. (English) Zbl 1431.35038 J. Math. Anal. Appl. 480, No. 2, Article ID 123405, 14 p. (2019). MSC: 35J62 35J75 35A01 PDF BibTeX XML Cite \textit{G. dos Santos} et al., J. Math. Anal. Appl. 480, No. 2, Article ID 123405, 14 p. (2019; Zbl 1431.35038) Full Text: DOI
Kang, Hongliang; Xiao, Hongmin Existence and multiplicity of positive solutions for three-point boundary value problems with derivatives of nonlinear terms. (Chinese. English summary) Zbl 1438.34097 J. Sichuan Norm. Univ., Nat. Sci. 42, No. 2, 194-198 (2019). MSC: 34B18 34B10 47N20 PDF BibTeX XML Cite \textit{H. Kang} and \textit{H. Xiao}, J. Sichuan Norm. Univ., Nat. Sci. 42, No. 2, 194--198 (2019; Zbl 1438.34097) Full Text: DOI
Zhang, Yunfei; Liu, Bo; Zhu, Yan; Pei, Minghe Existence and multiplicity of positive periodic solutions of a class of nonlinear third-order differential equation. (Chinese. English summary) Zbl 1438.34133 J. Beihua Univ., Nat. Sci. 20, No. 3, 299-303 (2019). MSC: 34C25 34A34 47N20 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Beihua Univ., Nat. Sci. 20, No. 3, 299--303 (2019; Zbl 1438.34133) Full Text: DOI
Chen, Wenjing; Gui, Yuyan Multiplicity of solutions for fractional \(p\& q\)-Laplacian system involving critical concave-convex nonlinearities. (English) Zbl 1427.35046 Appl. Math. Lett. 96, 81-88 (2019). MSC: 35J60 35R11 PDF BibTeX XML Cite \textit{W. Chen} and \textit{Y. Gui}, Appl. Math. Lett. 96, 81--88 (2019; Zbl 1427.35046) Full Text: DOI
Che, Guofeng; Chen, Haibo; Wu, Tsung-Fang Existence and multiplicity of positive solutions for fractional Laplacian systems with nonlinear coupling. (English) Zbl 1428.35494 J. Math. Phys. 60, No. 8, 081511, 28 p. (2019). MSC: 35Q55 35J47 35R11 35B09 35A01 35B38 58E05 PDF BibTeX XML Cite \textit{G. Che} et al., J. Math. Phys. 60, No. 8, 081511, 28 p. (2019; Zbl 1428.35494) Full Text: DOI
Galybin, Alexander N. Cauchy BVP for elastic half-plane posed in displacement orientations. (English) Zbl 1418.74007 Cheng, Alexander H.-D. (ed.) et al., Boundary elements and other mesh reduction methods XXXXI. Selected papers based on the presentations at the 41st international conference (BEM/MRM), New Forest, UK, September 11–13, 2018. Southampton: WIT Press. WIT Trans. Eng. Sci. 122, 201-208 (2019). MSC: 74B05 45E05 65R20 74G35 PDF BibTeX XML Cite \textit{A. N. Galybin}, WIT Trans. Eng. Sci. 122, 201--208 (2019; Zbl 1418.74007) Full Text: Link
Xiang, Mingqi; Zhang, Binlin A remark on fractional \(p\)-Kirchhoff problems involving multiple zeros. (English) Zbl 1447.35116 Complex Var. Elliptic Equ. 64, No. 10, 1655-1665 (2019). MSC: 35D30 35R11 35R09 35A15 47G20 35J61 PDF BibTeX XML Cite \textit{M. Xiang} and \textit{B. Zhang}, Complex Var. Elliptic Equ. 64, No. 10, 1655--1665 (2019; Zbl 1447.35116) Full Text: DOI
Argyros, Ioannis K.; George, Santhosh Unified ball convergence of inexact methods for finding zeros with multiplicity. (English) Zbl 1435.65081 Appl. Appl. Math. 14, No. 1, 223-234 (2019). Reviewer: Yekini Shehu (Nsukka) MSC: 65H20 65H05 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, Appl. Appl. Math. 14, No. 1, 223--234 (2019; Zbl 1435.65081) Full Text: Link
Shiu, Anne; de Wolff, Timo Nondegenerate multistationarity in small reaction networks. (English) Zbl 1415.92088 Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2683-2700 (2019). MSC: 92C42 12D10 14P05 34D20 65H04 80A30 PDF BibTeX XML Cite \textit{A. Shiu} and \textit{T. de Wolff}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2683--2700 (2019; Zbl 1415.92088) Full Text: DOI arXiv
Yang, Dandan; Bai, Chuanzhi Multiplicity results for a class of Kirchhoff-Schrödinger-Poisson system involving sign-changing weight functions. (English) Zbl 1421.35121 J. Funct. Spaces 2019, Article ID 6059459, 11 p. (2019). MSC: 35J60 35A01 PDF BibTeX XML Cite \textit{D. Yang} and \textit{C. Bai}, J. Funct. Spaces 2019, Article ID 6059459, 11 p. (2019; Zbl 1421.35121) Full Text: DOI
de Hoop, Maarten V.; Liu, Jian-Guo; Markowich, Peter A.; Ussembayev, Nail S. Plane-wave analysis of a hyperbolic system of equations with relaxation in \(\mathbb{R}^d\). (English) Zbl 1437.35067 Commun. Math. Sci. 17, No. 1, 61-79 (2019). MSC: 35B40 35L45 74D05 PDF BibTeX XML Cite \textit{M. V. de Hoop} et al., Commun. Math. Sci. 17, No. 1, 61--79 (2019; Zbl 1437.35067) Full Text: DOI arXiv
Petean, Jimmy; Barrantes González, Héctor A note on solutions of Yamabe-type equations on products of spheres. (English) Zbl 1418.53044 Proc. Am. Math. Soc. 147, No. 7, 3143-3153 (2019). MSC: 53C21 58J05 PDF BibTeX XML Cite \textit{J. Petean} and \textit{H. Barrantes González}, Proc. Am. Math. Soc. 147, No. 7, 3143--3153 (2019; Zbl 1418.53044) Full Text: DOI
Huang, Shao-Yuan Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications. (English) Zbl 1419.34086 Discrete Contin. Dyn. Syst. 39, No. 6, 3443-3462 (2019). MSC: 34B09 34B15 34B18 34C23 PDF BibTeX XML Cite \textit{S.-Y. Huang}, Discrete Contin. Dyn. Syst. 39, No. 6, 3443--3462 (2019; Zbl 1419.34086) Full Text: DOI
Trofimov, Vyacheslav A.; Loginova, Maria M.; Egorenkov, Vladimir A. A mathematical model of optical bistability and the multiplicity of its solutions. (English) Zbl 1427.78022 J. Comput. Appl. Math. 354, 663-681 (2019). Reviewer: Michael Jung (Dresden) MSC: 78A60 82D37 78M20 65M06 65M12 PDF BibTeX XML Cite \textit{V. A. Trofimov} et al., J. Comput. Appl. Math. 354, 663--681 (2019; Zbl 1427.78022) Full Text: DOI
Amster, Pablo Multiple solutions for an elliptic system with indefinite Robin boundary conditions. (English) Zbl 1419.35031 Adv. Nonlinear Anal. 8, 603-614 (2019). MSC: 35J57 35J60 PDF BibTeX XML Cite \textit{P. Amster}, Adv. Nonlinear Anal. 8, 603--614 (2019; Zbl 1419.35031) Full Text: DOI
Yi, Taishan; Zou, Xingfu Existence, multiplicity, shape and attractivity of heterogeneous steady states for bistable reaction-diffusion equations in the plane. (English) Zbl 1414.35101 J. Differ. Equations 267, No. 7, 4014-4046 (2019). Reviewer: Adrian Muntean (Karlstad) MSC: 35K15 35B40 35K57 PDF BibTeX XML Cite \textit{T. Yi} and \textit{X. Zou}, J. Differ. Equations 267, No. 7, 4014--4046 (2019; Zbl 1414.35101) Full Text: DOI
Ustinov, N. S. Multiplicity of positive solutions to the boundary-value problems for fractional Laplacians. (English. Russian original) Zbl 1433.35155 J. Math. Sci., New York 236, No. 4, 446-460 (2019); translation from Zap. Nauchn. Semin. POMI 459, 104-126 (2017). MSC: 35J92 35R11 35B09 PDF BibTeX XML Cite \textit{N. S. Ustinov}, J. Math. Sci., New York 236, No. 4, 446--460 (2019; Zbl 1433.35155); translation from Zap. Nauchn. Semin. POMI 459, 104--126 (2017) Full Text: DOI
Calamai, Alessandro; Pera, Maria Patrizia; Spadini, Marco Branches of forced oscillations induced by a delayed periodic force. (English) Zbl 1412.70025 Adv. Nonlinear Stud. 19, No. 1, 149-163 (2019). MSC: 70K40 34K13 34C25 37N05 PDF BibTeX XML Cite \textit{A. Calamai} et al., Adv. Nonlinear Stud. 19, No. 1, 149--163 (2019; Zbl 1412.70025) Full Text: DOI
Li, Fuyi; Rong, Ting; Liang, Zhanping Fučik spectrum for the Kirchhoff-type problem and applications. (English) Zbl 1418.35157 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 280-302 (2019). MSC: 35J60 35J25 PDF BibTeX XML Cite \textit{F. Li} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 280--302 (2019; Zbl 1418.35157) Full Text: DOI
Arcoya, David; Bereanu, Cristian; Torres, Pedro J. Critical point theory for the Lorentz force equation. (English) Zbl 1421.35095 Arch. Ration. Mech. Anal. 232, No. 3, 1685-1724 (2019). Reviewer: Dian K. Palagachev (Bari) MSC: 35J60 35A01 PDF BibTeX XML Cite \textit{D. Arcoya} et al., Arch. Ration. Mech. Anal. 232, No. 3, 1685--1724 (2019; Zbl 1421.35095) Full Text: DOI
Bartolo, Rossella; Colorado, Eduardo; Bisci, Giovanni Molica Perturbed problems involving the square root of the Laplacian. (English) Zbl 1412.49008 Minimax Theory Appl. 4, No. 1, 33-54 (2019). Reviewer: Dumitru Motreanu (Perpignan) MSC: 49J20 35A15 35S15 PDF BibTeX XML Cite \textit{R. Bartolo} et al., Minimax Theory Appl. 4, No. 1, 33--54 (2019; Zbl 1412.49008) Full Text: Link
Shang, Xudong; Zhang, Jihui Multiplicity and concentration of positive solutions for fractional nonlinear schrodinger equations with critical growth. (English) Zbl 1406.35477 Electron. J. Differ. Equ. 2019, Paper No. 24, 22 p. (2019). MSC: 35R11 35A15 58E05 PDF BibTeX XML Cite \textit{X. Shang} and \textit{J. Zhang}, Electron. J. Differ. Equ. 2019, Paper No. 24, 22 p. (2019; Zbl 1406.35477) Full Text: Link
Junges Miotto, Taísa; Miotto, Márcio Luís An Ambrosetti-Prodi-type problem for the \((p,q)\)-Laplacian operator. (English) Zbl 1408.35059 Commun. Contemp. Math. 21, No. 1, Article ID 1750067, 15 p. (2019). MSC: 35J92 35J40 35A01 PDF BibTeX XML Cite \textit{T. Junges Miotto} and \textit{M. L. Miotto}, Commun. Contemp. Math. 21, No. 1, Article ID 1750067, 15 p. (2019; Zbl 1408.35059) Full Text: DOI
Benhassine, Abderrazek On nonlinear Dirac equations. (English) Zbl 1410.35155 J. Math. Phys. 60, No. 1, 011510, 12 p. (2019). MSC: 35Q41 35Q55 81Q05 81Q20 81R25 81V10 35A15 PDF BibTeX XML Cite \textit{A. Benhassine}, J. Math. Phys. 60, No. 1, 011510, 12 p. (2019; Zbl 1410.35155) Full Text: DOI
Nornberg, Gabrielle; Sirakov, Boyan A priori bounds and multiplicity for fully nonlinear equations with quadratic growth in the gradient. (English) Zbl 1436.35164 J. Funct. Anal. 276, No. 6, 1806-1852 (2019). Reviewer: Josef Diblík (Brno) MSC: 35J60 35A02 PDF BibTeX XML Cite \textit{G. Nornberg} and \textit{B. Sirakov}, J. Funct. Anal. 276, No. 6, 1806--1852 (2019; Zbl 1436.35164) Full Text: DOI arXiv
Ambrosio, Vincenzo Multiplicity and concentration results for a fractional Choquard equation via penalization method. (English) Zbl 1408.35001 Potential Anal. 50, No. 1, 55-82 (2019). Reviewer: Rodica Luca (Iaşi) MSC: 35A15 35B09 35R11 45G05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Potential Anal. 50, No. 1, 55--82 (2019; Zbl 1408.35001) Full Text: DOI
Abdellaoui, B.; Dieb, A.; Mahmoudi, F. On the fractional Lazer-McKenna conjecture with superlinear potential. (English) Zbl 1403.35311 Calc. Var. Partial Differ. Equ. 58, No. 1, Paper No. 7, 36 p. (2019). Reviewer: Florin Catrina (New York) MSC: 35R11 35A15 35A16 35J61 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., Calc. Var. Partial Differ. Equ. 58, No. 1, Paper No. 7, 36 p. (2019; Zbl 1403.35311) Full Text: DOI
Xie, Weihong; Chen, Haibo Existence and multiplicity of normalized solutions for the nonlinear Kirchhoff type problems. (English) Zbl 1422.35057 Comput. Math. Appl. 76, No. 3, 579-591 (2018). MSC: 35J60 35A01 35J20 PDF BibTeX XML Cite \textit{W. Xie} and \textit{H. Chen}, Comput. Math. Appl. 76, No. 3, 579--591 (2018; Zbl 1422.35057) Full Text: DOI
Duan, Yu; Sun, Xin Multiplicity of solutions for asymptotically linear Kirchhoff type equation. (Chinese. English summary) Zbl 1424.35135 Math. Appl. 31, No. 3, 566-571 (2018). MSC: 35J20 35J60 PDF BibTeX XML Cite \textit{Y. Duan} and \textit{X. Sun}, Math. Appl. 31, No. 3, 566--571 (2018; Zbl 1424.35135)
Zegeling, Paul Andries; Iqbal, Sehar Nonstandard finite differences for a truncated Bratu-Picard model. (English) Zbl 1426.65107 Appl. Math. Comput. 324, 266-284 (2018). MSC: 65L12 34B08 34B15 34C23 74G15 PDF BibTeX XML Cite \textit{P. A. Zegeling} and \textit{S. Iqbal}, Appl. Math. Comput. 324, 266--284 (2018; Zbl 1426.65107) Full Text: DOI
Liu, Ronghua; Wang, Fanglei; An, Yukun On radial solutions for Monge-Ampère equations. (English) Zbl 1438.35202 Turk. J. Math. 42, No. 4, 1590-1609 (2018). MSC: 35J96 47N20 35B07 PDF BibTeX XML Cite \textit{R. Liu} et al., Turk. J. Math. 42, No. 4, 1590--1609 (2018; Zbl 1438.35202) Full Text: DOI
Xu, Man; Ma, Ruyun Nonlinear elastic beam problems with the parameter near resonance. (English) Zbl 1417.34054 Open Math. 16, 1176-1186 (2018). Reviewer: Smail Djebali (Algiers) MSC: 34B09 34B27 34B15 34C23 34A40 PDF BibTeX XML Cite \textit{M. Xu} and \textit{R. Ma}, Open Math. 16, 1176--1186 (2018; Zbl 1417.34054) Full Text: DOI
Kirichuka, A.; Sadyrbaev, F. On boundary value problem for equations with cubic nonlinearity and step-wise coefficient. (English) Zbl 1415.34053 Differ. Equ. Appl. 10, No. 4, 433-447 (2018). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B15 34A36 PDF BibTeX XML Cite \textit{A. Kirichuka} and \textit{F. Sadyrbaev}, Differ. Equ. Appl. 10, No. 4, 433--447 (2018; Zbl 1415.34053) Full Text: DOI
Agarwal, Ravi P.; Luca, Rodica Positive solutions for a system of second-order discrete boundary value problems. (English) Zbl 1448.39017 Adv. Difference Equ. 2018, Paper No. 470, 17 p. (2018). MSC: 39A27 39A12 34B18 PDF BibTeX XML Cite \textit{R. P. Agarwal} and \textit{R. Luca}, Adv. Difference Equ. 2018, Paper No. 470, 17 p. (2018; Zbl 1448.39017) Full Text: DOI
Qin, Peige; Feng, Meiqiang; Li, Ping Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems. (English) Zbl 1448.34060 Adv. Difference Equ. 2018, Paper No. 421, 16 p. (2018). MSC: 34B18 34B10 34B37 34B15 PDF BibTeX XML Cite \textit{P. Qin} et al., Adv. Difference Equ. 2018, Paper No. 421, 16 p. (2018; Zbl 1448.34060) Full Text: DOI