×

Modelling spatio-temporal air pollution data from a mobile monitoring station. (English) Zbl 1510.62464

Summary: Environmental data is typically indexed in space and time. This work deals with modelling spatio-temporal air quality data, when multiple measurements are available for each space-time point. Typically this situation arises when different measurements referring to several response variables are observed in each space-time point, for example, different pollutants or size resolved data on particular matter. Nonetheless, such a kind of data also arises when using a mobile monitoring station moving along a path for a certain period of time. In this case, each spatio-temporal point has a number of measurements referring to the response variable observed several times over different locations in a close neighbourhood of the space-time point. We deal with this type of data within a hierarchical Bayesian framework, in which observed measurements are modelled in the first stage of the hierarchy, while the unobserved spatio-temporal process is considered in the following stages. The final model is very flexible and includes autoregressive terms in time, different structures for the variance-covariance matrix of the errors, and can manage covariates available at different space-time resolutions. This approach is motivated by the availability of data on urban pollution dynamics: fast measures of gases and size resolved particulate matter have been collected using an Optical Particle Counter located on a cabin of a public conveyance that moves on a monorail on a line transect of a town. Urban microclimate information is also available and included in the model. Simulation studies are conducted to evaluate the performance of the proposed model over existing alternatives that do not model data over the first stage of the hierarchy.

MSC:

62P12 Applications of statistics to environmental and related topics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M30 Inference from spatial processes

Software:

spTimer; spBayes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aït-Sahalia Y, Hansen LP. Handbook of financial econometrics, Vol 1: tools and techniques. Amsterdam : Elsevier - North-Holland; 2009. [Google Scholar]
[2] Horsburgh JS, Spackman Jones A, Stevens DK, Tarboton DG, Mesner NO. A sensor network for high frequency estimation of water quality constituent fluxes using surrogates. Environ Model Softw. 2010;25(9):1031-1044. doi: 10.1016/j.envsoft.2009.10.012[Crossref], [Web of Science ®], [Google Scholar]
[3] Hofmann GE, Smith JE, Johnson KS, et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PloS One. 2011;6(12):e28983. doi: 10.1371/journal.pone.0028983[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[4] Schwientek M, Osenbrück K, Fleischer M. Investigating hydrological drivers of nitrate export dynamics in two agricultural catchments in Germany using high-frequency data series. Environ Earth Sci. 2013;69(2):381-393. doi: 10.1007/s12665-013-2322-2[Crossref], [Web of Science ®], [Google Scholar]
[5] Matabos M, Bui AOV, Mihály S, Aguzzi J, Juniper SK, Ajayamohan RS. High-frequency study of epibenthic megafaunal community dynamics in Barkley Canyon: a multi-disciplinary approach using the NEPTUNE Canada network. J Marine Syst. 2014;130:56-68. doi: 10.1016/j.jmarsys.2013.05.002[Crossref], [Web of Science ®], [Google Scholar]
[6] Nastos PT, Matsangouras IT, Chronis TG. Spatio-temporal analysis of lightning activity over Greece – preliminary results derived from the recent state precision lightning network. Atmos Res. 2014;144:207-217. doi: 10.1016/j.atmosres.2013.10.021[Crossref], [Web of Science ®], [Google Scholar]
[7] Sahu SK, Gelfand AE, Holland DM. Spatio-temporal modeling of fine particulate matter. J Agric Biol Environ Stat. 2006;11(1):61-86. doi: 10.1198/108571106X95746[Crossref], [Web of Science ®], [Google Scholar]
[8] Sahu SK, Gelfand AE, Holland DM. High-resolution space-time ozone modeling for assessing trends. J Amer Statist Assoc. 2007;102(480):1221-1234. doi: 10.1198/016214507000000031[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1332.86014
[9] Bakar KS, Sahu SK. spTimer: spatio-temporal Bayesian modeling using R. J Statist Softw. 2015;63(15):1-32. doi: 10.18637/jss.v063.i15[Crossref], [Web of Science ®], [Google Scholar]
[10] Cocchi D, Greco F, Trivisano C. Hierarchical space-time modelling of PM10 pollution. Atmos Environ. 2007;41(3):532-542. doi: 10.1016/j.atmosenv.2006.08.032[Crossref], [Web of Science ®], [Google Scholar]
[11] Banerjee S, Gelfand AE, Finley AO, Sang H. Gaussian predictive process models for large spatial data sets. J R Stat Soc Ser B Stat Methodol. 2008;70(4):825-848. doi: 10.1111/j.1467-9868.2008.00663.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 05563371
[12] Sahu SK, Bakar KS. Hierarchical Bayesian autoregressive models for large space-time data with applications to ozone concentration modelling. Appl Stoch Models Bus Ind. 2012;28(5):395-415. doi: 10.1002/asmb.1951[Crossref], [Web of Science ®], [Google Scholar]
[13] Pollice A, Jona Lasinio G. Spatiotemporal analysis of the PM10 concentration over the Taranto area. Environ Monit Assess. 2010;162(1-4):177-190. doi: 10.1007/s10661-009-0786-z[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[14] Li L, Wu J, Ghosh JK, Ritz B. Estimating spatiotemporal variability of ambient air pollutant concentrations with a hierarchical model. Atmos Environ. 2013;71:54-63. doi: 10.1016/j.atmosenv.2013.01.038[Crossref], [Web of Science ®], [Google Scholar]
[15] Fassò A, El-Shaarawi A, Ranalli MG. Advanced methods for space-time environmental data. Stat Methods Appl. 2016;25(1):1-4. doi: 10.1007/s10260-015-0347-2[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1416.00033
[16] Banerjee S, Carlin BP, Gelfand AE. Hierarchical modeling and analysis for spatial data. Boca Raton: Chapman & Hall/CRC; 2004. [Google Scholar] · Zbl 1053.62105
[17] Ranalli MG, Rocco G, Jona Lasinio G, et al. Functional exploratory data analysis for high resolution measurements of urban particulate matter. Biom J. 2016; in press. DOI:10.1002/bimj.201400251. [Crossref], [PubMed], [Google Scholar] · Zbl 1358.62112
[18] Castellini S, Moroni B, Cappelletti D. PMetro: measurement of urban aerosols on a mobile platform. Measurement. 2014;49:99-106. doi: 10.1016/j.measurement.2013.11.045[Crossref], [Web of Science ®], [Google Scholar]
[19] Cartechini L, Castellini S, Moroni B, et al. Acute episodes of black carbon and aerosol contamination in a museum environment: results of integrated real-time and off-line measurements. Atmos Environ. 2015;116:130-137. doi: 10.1016/j.atmosenv.2015.06.033[Crossref], [Web of Science ®], [Google Scholar]
[20] Del Sarto S, Ranalli MG, Bakar KS, et al. Bayesian spatio-temporal modeling of urban air pollution dynamics. In Selected papers of the 47th scientific meeting of the Italian statistical society. Springer-Verlag. 2016, in press. [Google Scholar]
[21] Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol. 2009;71(2):319-392. doi: 10.1111/j.1467-9868.2008.00700.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1248.62156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.