×

Active suspensions in thin films: nutrient uptake and swimmer motion. (English) Zbl 1294.76298

Summary: A numerical study of swimming particle motion and nutrient transport is conducted for a semidilute to dense suspension in a thin film. The steady squirmer model is used to represent the motion of living cells in suspension with the nutrient uptake by swimming particles modelled using a first-order kinetic equation representing the absorption process that occurs locally at the particle surface. An analysis of the dynamics of the neutral squirmers inside the film shows that the vertical motion is reduced significantly. The mean nutrient uptake for both isolated and populations of swimmers decreases for increasing swimming speeds when nutrient advection becomes relevant as less time is left for the nutrient to diffuse to the surface. This finding is in contrast to the case where the uptake is modelled by imposing a constant nutrient concentration at the cell surface and the mass flux results to be an increasing monotonic function of the swimming speed. In comparison to non-motile particles, the cell motion has a negligible influence on nutrient uptake at lower particle absorption rates since the process is rate limited. At higher absorption rates, the swimming motion results in a large increase in the nutrient uptake that is attributed to the movement of particles and increased mixing in the fluid. As the volume fraction of swimming particles increases, the squirmers consume slightly less nutrients and require more power for the same swimming motion. Despite this increase in energy consumption, the results clearly demonstrate that the gain in nutrient uptake make swimming a winning strategy for micro-organism survival also in relatively dense suspensions.

MSC:

76Z10 Biopropulsion in water and in air
76T20 Suspensions
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1017/S0022112009993454 · Zbl 1189.76677 · doi:10.1017/S0022112009993454
[2] DOI: 10.1063/1.3642645 · Zbl 1308.76349 · doi:10.1063/1.3642645
[3] DOI: 10.1103/PhysRevE.82.021408 · doi:10.1103/PhysRevE.82.021408
[4] DOI: 10.1103/PhysRevLett.84.3017 · doi:10.1103/PhysRevLett.84.3017
[5] DOI: 10.1103/PhysRevLett.101.038102 · doi:10.1103/PhysRevLett.101.038102
[6] DOI: 10.1017/S0022112008003807 · Zbl 1155.76065 · doi:10.1017/S0022112008003807
[7] DOI: 10.1103/PhysRevLett.100.248101 · doi:10.1103/PhysRevLett.100.248101
[8] DOI: 10.1016/S0065-2377(06)31002-2 · doi:10.1016/S0065-2377(06)31002-2
[9] DOI: 10.1016/j.jcp.2005.03.017 · Zbl 1138.76398 · doi:10.1016/j.jcp.2005.03.017
[10] DOI: 10.1103/PhysRevLett.95.204501 · doi:10.1103/PhysRevLett.95.204501
[11] Biophys. J. 102 pp 1483– (2012) · doi:10.1016/j.bpj.2012.02.033
[12] DOI: 10.1017/jfm.2012.101 · Zbl 1248.76170 · doi:10.1017/jfm.2012.101
[13] DOI: 10.1073/pnas.0600566103 · doi:10.1073/pnas.0600566103
[14] DOI: 10.1002/cpa.3160050201 · Zbl 0046.41908 · doi:10.1002/cpa.3160050201
[15] DOI: 10.1103/PhysRevE.84.041932 · doi:10.1103/PhysRevE.84.041932
[16] Phys. Fluids 17 (2005)
[17] DOI: 10.1023/A:1010414013942 · Zbl 1046.76037 · doi:10.1023/A:1010414013942
[18] DOI: 10.1073/pnas.1107046108 · doi:10.1073/pnas.1107046108
[19] DOI: 10.1146/annurev-fluid-121108-145434 · Zbl 1299.76320 · doi:10.1146/annurev-fluid-121108-145434
[20] J. Fluid Mech. 443 pp 329– (2006)
[21] Contact Mechanics (1985) · Zbl 0599.73108
[22] DOI: 10.1103/PhysRevLett.99.058102 · doi:10.1103/PhysRevLett.99.058102
[23] DOI: 10.1017/CBO9780511550140.007 · doi:10.1017/CBO9780511550140.007
[24] DOI: 10.1016/0021-9991(72)90065-4 · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[25] DOI: 10.1146/annurev.fl.24.010192.001525 · Zbl 0825.76985 · doi:10.1146/annurev.fl.24.010192.001525
[26] Appl. Sci. Res. 21 pp 452– (1970)
[27] DOI: 10.1017/S0022112009991108 · Zbl 1183.76937 · doi:10.1017/S0022112009991108
[28] DOI: 10.1146/annurev.fluid.37.061903.175743 · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[29] DOI: 10.1063/1.3660268 · Zbl 06423233 · doi:10.1063/1.3660268
[30] DOI: 10.1088/0953-8984/21/20/204101 · doi:10.1088/0953-8984/21/20/204101
[31] DOI: 10.1112/S002557930001216X · Zbl 0479.76040 · doi:10.1112/S002557930001216X
[32] DOI: 10.1073/pnas.1116210109 · doi:10.1073/pnas.1116210109
[33] DOI: 10.1103/PhysRevLett.107.028102 · doi:10.1103/PhysRevLett.107.028102
[34] DOI: 10.1016/S0021-9991(03)00209-2 · Zbl 1097.76600 · doi:10.1016/S0021-9991(03)00209-2
[35] DOI: 10.1017/S0022112006002631 · Zbl 1177.76477 · doi:10.1017/S0022112006002631
[36] DOI: 10.1017/jfm.2013.225 · Zbl 1287.76258 · doi:10.1017/jfm.2013.225
[37] DOI: 10.1016/j.jcp.2012.02.026 · Zbl 1245.76064 · doi:10.1016/j.jcp.2012.02.026
[38] DOI: 10.1103/PhysRevLett.100.088103 · doi:10.1103/PhysRevLett.100.088103
[39] DOI: 10.1063/1.4718446 · Zbl 06428347 · doi:10.1063/1.4718446
[40] J. Fluid Mech. 588 pp 399– (2007)
[41] DOI: 10.1103/PhysRevE.83.011901 · doi:10.1103/PhysRevE.83.011901
[42] DOI: 10.1016/0009-2509(61)80035-3 · doi:10.1016/0009-2509(61)80035-3
[43] J. Fluid Mech. 588 pp 437– (2007)
[44] DOI: 10.1017/S0022112005005768 · Zbl 1076.76079 · doi:10.1017/S0022112005005768
[45] DOI: 10.1093/qjmam/56.1.65 · Zbl 1069.76061 · doi:10.1093/qjmam/56.1.65
[46] DOI: 10.1017/S002211201000563X · Zbl 1225.76321 · doi:10.1017/S002211201000563X
[47] DOI: 10.1017/S002211207100048X · Zbl 0224.76031 · doi:10.1017/S002211207100048X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.