×

Galerkin meshfree methods: a review and mathematical implementation aspects. (English) Zbl 1461.74093

Summary: Galerkin meshfree approaches are emerging in the field of numerical methods, which attracted the attention towards moving beyond finite element and finite difference methods. As compare to conventional mesh based finite element methods, the Galerkin meshfree methods, i.e., element free Galerkin method, local Petrov-Galerkin method, natural element method, radial point interpolation method exhibits some advantages in solution of multi-physics problem, large deformation problems, crack growth analysis due to its potential with handling variety of field behaviour. However, imposition of essential boundary conditions and nodal integration are major difficulties in Galerkin meshfree methods, this work also suggest methods for imposition of essential boundary conditions and some accurate numerical integration techniques for nodal integration. This paper gives systematic reviews and mathematical implementation aspects about Galerkin meshfree methods and its application in engineering problems, i.e., structural, heat transfer, fluid dynamics and electromagnetics.

MSC:

74S99 Numerical and other methods in solid mechanics
76M99 Basic methods in fluid mechanics
80M99 Basic methods in thermodynamics and heat transfer
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bildik, N., Deniz, S.: Solving the burgers’ and regularized long wave equations using the new perturbation iteration technique. Numer. Methods Partial Differ. Equ. 34(5), 1489-1501 (2017). https://doi.org/10.1002/num.22214 · Zbl 1407.65166 · doi:10.1002/num.22214
[2] Deniz S., Bildik, N., Sezer M.: A note on stability analysis of taylor collocation method. Celal Bayar Üniversitesi Fen Bilimleri Dergisi (2017). https://doi.org/10.18466/cbayarfbe.302660
[3] Koçak, H., Dahong, Z., Yildirim, A.: A range-free method to determine antoine vapor-pressure heat transfer-related equation coefficients using the Boubaker polynomial expansion scheme. Russian J. Phys. Chem. A 85(5), 900-902 (2011). https://doi.org/10.1134/s0036024411040145 · doi:10.1134/s0036024411040145
[4] Touzot, G., Willion, P., Nayrols, B.: Generalizing the finite element method diffuse approximation and diffuse elements. Comput. Mech. 10, 307-318 (1992). https://doi.org/10.1007/bf00364252 · Zbl 0764.65068 · doi:10.1007/bf00364252
[5] Dehghan, M.: The two-grid interpolating element free Galerkin (TG-IEFG) method for solving Rosenau-regularized long wave equation with error analysis. Appl. Anal. 97(7), 1129-1153 (2017). https://doi.org/10.1080/00036811.2017.1303137 · Zbl 1395.65133 · doi:10.1080/00036811.2017.1303137
[6] Jamason, L., Ukai, O., Aadachi, T., Yuasa, A., Abbaszadeh, M.: Wavelet based numerical methods. Int. J. Comput. Fluid Dyn. 10, 267-280 (1998). https://doi.org/10.1080/10618569808961690 · Zbl 0938.76084 · doi:10.1080/10618569808961690
[7] Arens, G., Fourgu, E., Morlet, J., Giard, D.: Wave propagation and sampling theory complex signal and scattering in multi-layered media. Geophysics 47, 203-221 (1982). https://doi.org/10.1190/1.1441328 · doi:10.1190/1.1441328
[8] Gabor, D.: Theory of communication Part 1: the analysis of information. J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 93, 429-441 (1946). https://doi.org/10.1049/ji-3-2.1946.0074 · doi:10.1049/ji-3-2.1946.0074
[9] Zweig, G.: Basilar Membrane Motion, Cold Spring Harbour Symposia on Quantitative Biology, Cold Spring Harbour Laboratory Press (1976) 619-633
[10] Vasiliev, O., Schneidar, K.: Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473-503 (2010). https://doi.org/10.1146/annurev-fluid-121108-145637 · Zbl 1345.76085 · doi:10.1146/annurev-fluid-121108-145637
[11] Cruz, P., Mendes, A., Magallanes, F.: Using wavelets for solving PDEs: an adaptive collocation method. Chem. Eng. Sci. 56, 3305-3309 (2001). https://doi.org/10.1016/S0009-2509(00)00551-0 · doi:10.1016/S0009-2509(00)00551-0
[12] Dahmen, W.: Wavelet methods for PDE—some recent developments. J. Comput. Appl. Math. 128, 133-185 (2001). https://doi.org/10.1016/S0377-0427(00)00511-2 · Zbl 0974.65101 · doi:10.1016/S0377-0427(00)00511-2
[13] Albert, Cohen: Numerical Analysis of Wavelet Method. Elsevier, Amstedam (2003) · Zbl 1038.65151
[14] Tabacco, A., Urban, K., Canuto, C.: The wavelet element method part I: Construction and analysis. Appl. Comput. Harmonic Anal. 1, 2 (1999). https://doi.org/10.1006/acha.1997.0242 · Zbl 0949.42024 · doi:10.1006/acha.1997.0242
[15] Tabacco, A., Urban, K., Canuto, C.: The wavelet element method part II: realization and additional feature in 2D and 3D. Appl. Comput. Harmonic Anal. (2000). https://doi.org/10.1006/acha.2000.0282 · Zbl 0951.42016 · doi:10.1006/acha.2000.0282
[16] Chen, W., Wu, C.W.: Spline wavelets element method for frame structures vibration. Comput. Mech. 16, 11 (1995). https://doi.org/10.1007/BF00369881 · Zbl 0826.73054 · doi:10.1007/BF00369881
[17] Wang, J., Zhang, X., Zhou, Y.: Application of wavelet Galerkin FEM to bending of beam and plate structures. Appl. Math. Mech. 19, 745 (1998). https://doi.org/10.1007/BF02457749 · Zbl 0919.73305 · doi:10.1007/BF02457749
[18] Kurdila, A., Pilant, M.: A class of finite element methods based on orthonormal, compactly supported wavelets. Comput. Mech. 16, 235 (1995). https://doi.org/10.1007/BF00369868 · Zbl 0830.65084 · doi:10.1007/BF00369868
[19] Lawton, W, Burrus C., Gopinath, R.: Wavelet Galerkin approximation of linear translation invariant operators. In: ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing vol. 3, pp. 2021-2023, (1991)
[20] Resnikoff H., Tenenbaum, E., Latto A.: The evaluation of connection coefficients of compactly supported wavelets. In: Proceedings of the French USA Workshop on Wavelets and Turbulence. Springer, pp. 76-89, (1991)
[21] Beylkin, G.; Coifman, R.; Rokhlin, V., Fast wavelet transforms and numerical algorithms, 741-783 (2009), Princeton · doi:10.1515/9781400827268.741
[22] Laurencoat, P., Jaffarid, S.: Orthonormal Wavelets, Analysis of Operators and Applications to Numerical Analysis, Chui C. Wavelets: A Tutorial in Theory and Applications, Academic Press, New York (1992) 543-601 · Zbl 0764.65066
[23] Jaffarid, S.: Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal. 29(4), 965-986 (1992). https://doi.org/10.1137/0729059 · Zbl 0761.65083 · doi:10.1137/0729059
[24] Zweig G.: Wavelet Transforms as Solutions of Partial Differential Equations, Los Alamos National Lab., 1997, https://doi.org/10.2172/534535
[25] Michelli, C., Dahmen, W.: Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30(2), 507-537 (1993). https://doi.org/10.1137/0730024 · Zbl 0773.65006 · doi:10.1137/0730024
[26] Temam, R., Chen, M.: Nonlinear Galerkin method in the finite difference case and wavelet like incremental unknowns. Numer. Math. 64(1), 271-294 (1993). https://doi.org/10.1007/bf01388690 · Zbl 0798.65093 · doi:10.1007/bf01388690
[27] Bertoluza, S.: A posteriori error estimates for the wavelet Galerkin method. Appl. Math. Lett. 8(5), 1-6 (1995). https://doi.org/10.1016/0893-9659(95)00057 · Zbl 0835.65121 · doi:10.1016/0893-9659(95)00057
[28] Bertoluzza, Silvia; Naldi, Giovanni; Ravel, Jean Christophe, Wavelet Methods for the Numerical Solution of Boundary Value Problems on the Interval, 425-448 (1994) · Zbl 0845.65040
[29] Bertoluza S.: Interior estimates for the wavelet Galerkin method, Numerische Math. 78(1), 1-20, https://doi.org/10.1007/s002110050301 · Zbl 0888.65113 · doi:10.1007/s002110050301
[30] Verani, M., Bertoluza, S.: Convergence of a nonlinear wavelet algorithm for the solution of PDEs. Appl. Math. Lett. 16(1), 113-118 (2003). https://doi.org/10.1016/s0893-9659(02)00152-0 · Zbl 1020.65077 · doi:10.1016/s0893-9659(02)00152-0
[31] Dyn, N., Cohen, A., Kaber, S.: Multiresolution schemes on triangles for scalar conservation laws. J. Comput. Phys. 161(1), 264-286 (2000). https://doi.org/10.1006/jcph.2000.6503 · Zbl 0959.65105 · doi:10.1006/jcph.2000.6503
[32] Kaber, M., Postel, M., Cohen, A.: Adaptive multiresolution for finite volume solutions of gas dynamics. Comput. Fluids 32(1), 31-38 (2003). https://doi.org/10.1016/s0045-7930(01)00096-2 · Zbl 1009.76520 · doi:10.1016/s0045-7930(01)00096-2
[33] Berrone, S., Emmel, L.: Towards a realization of a wavelet Galerkin method on non-trivial domains. Math. Models Methods Appl. Sci. 12(11), 1525-1554 (2002). https://doi.org/10.1142/s0218202502002227 · Zbl 1022.65127 · doi:10.1142/s0218202502002227
[34] Nayak, R.: Molecular Simulation of Liquid Crystal Polymer Flow: A WaveletFinite Element Analysis, MIT, 1998
[35] Williams, J., Amaratunga, K.: Introduction to wavelets in engineering. Int. J. Numer. Methods Eng. (1994). https://doi.org/10.1002/nme.1620371403 · Zbl 0812.65144 · doi:10.1002/nme.1620371403
[36] Chen, Z., Micchelli, C.: Discrete wavelet Petrov-Galerkin methods. Adv. Comput. Math. 16, 1 (2002). https://doi.org/10.1023/A:1014273420351 · Zbl 0998.65120 · doi:10.1023/A:1014273420351
[37] Piessens, R., Sweldens, W.: Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions. SIAM J. Numer. Anal. 31(4), 1240-1264. https://doi.org/10.1137/0731065 · Zbl 0822.65013 · doi:10.1137/0731065
[38] Chen X.: Second generation wavelet finite element and rotor cracks quantitative identification method. Chinese J. Mech. Eng. 23(02), 195. https://doi.org/10.3901/cjme.2010.02.195 · doi:10.3901/CJME.2010.02.195
[39] Chen, X., Li, B., He, Z.: A wavelet-based error estimator and adaptive scheme for plate bending problems. Int. J. Comput. Methods 7, 241-259 (2010). https://doi.org/10.1142/S0219876210002155 · Zbl 1267.74111 · doi:10.1142/S0219876210002155
[40] Li, B., Chen, X., He, Z.: Detection of crack location and size in structures using wavelet finite element methods. J. Sound Vibr. 285 (2005) https://doi.org/10.1016/j.jsv.2004.08.040 · doi:10.1016/j.jsv.2004.08.040
[41] He, Z., Xiang, J., Chen, X., Li, B.: A dynamic multiscale lifting computation method using Daubechies wavelet. J. Comput. Appl. Math. 188, 228-245 (2006). https://doi.org/10.1016/j.cam.2005.04.015 · Zbl 1086.65127 · doi:10.1016/j.cam.2005.04.015
[42] Basu, P., Orge, A., Badri, S., Lin, J.: Higher-order modelling of continua by finite-element, boundary-element, Meshless, and wavelet methods. Comput. Math Appl. 46, 15-33 (2003). https://doi.org/10.1016/S0898-1221(03)90078-2 · Zbl 1288.76041 · doi:10.1016/S0898-1221(03)90078-2
[43] Meyer, Y.: Principe incertitude, bases hilbertiennes et algebras d’operateurs. Bouake Semen. 662, 1271-1283 (1985)
[44] Narcowich J., Boggess A.: A First Course in Wavelets with Fourier Analysis, Publishing House of Electronics Industry, Beijing (2002) 155-227, doi: 978-0-470-43117-7
[45] Chen, X., He, Y., He, Z., Wang, Y.: New decoupled wavelet bases for multiresolution structural analysis. Struct. Eng. Mech. 35, 1-16 (2010). https://doi.org/10.12989/sem.2010.35.2.175 · doi:10.12989/sem.2010.35.2.175
[46] Sweldens, W.: The lifting scheme: a construction of second-generation wavelet. SIAM J. Numer. Anal. 2, 511-546 (1997). https://doi.org/10.1137/S0036141095289051 · Zbl 0911.42016 · doi:10.1137/S0036141095289051
[47] Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674-693 (1989). https://doi.org/10.1109/34.192463 · Zbl 0709.94650 · doi:10.1109/34.192463
[48] Jintai, C.: An Introduction to Wavelets. Zheng Xing Cheng Translation, Xi’an, Xi’an Jiao tong University Press (1995) 297-327
[49] Castrillón, C., Amaratunga, K.: Spatially adapted multiwavelets and sparse representation of integral equations on general geometries. SIAM J. Sci. Comput. 24, 1530-1566 (2002). https://doi.org/10.1137/S1064827501371238 · Zbl 1042.65112 · doi:10.1137/S1064827501371238
[50] Williams, K., Qian, S., Weiss, J., Amaratunga, K.: Wavelet-Galerkin solutions for one-dimensional partial differential equations. Int. J. Numer. Methods Eng. 37, 2703-2716 (1994) · Zbl 0812.65144 · doi:10.1002/nme.1620371403
[51] Christov, I.: Wavelet-Galerkin Methods for Partial Differential Equations. MIT, Matrix Analysis and Wavelets REU, TAMU (2003)
[52] Qian, S., Weiss, J.: Wavelets and the numerical solution of partial differential equations. J. Comput. Phys. 106, 155-175 (1993). https://doi.org/10.1006/jcph.1993.1100 · Zbl 0771.65072 · doi:10.1006/jcph.1993.1100
[53] Amaratunga, K., Williams, R.: Wavelet based green’s function approach to 2D PDEs. Eng. Comput. 10, 349-367 (1993) · doi:10.1108/eb023913
[54] Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz’s equation by the capacitance matrix method. Math. Comput. 30, 433-468 (1976). https://doi.org/10.2307/2005318 · Zbl 0332.65057 · doi:10.2307/2005318
[55] Widlund, O.: Capacitance Matrix Methods for Helmholtz’s Equation on General Bounded Regions, Numerical Treatment of Differential Equations, Springer, Berlin (1978) 209-219. https://doi.org/10.2307/2006065 · Zbl 0407.65047 · doi:10.2307/2006065
[56] Ohyoshi, T., Lu, D., Miura, K.: Treatment of boundary conditions in one dimensional Wavelet-Galerkin method. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 40, 382-388 (1997). https://doi.org/10.1299/jsmea.40.382 · doi:10.1299/jsmea.40.382
[57] Diaz, R.: A wavelet-Galerkin scheme for analysis of large-scale problems on simple domains. Int. J. Numer. Methods Eng. 44, 1599-1616 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990420)44:11 · Zbl 0932.74077 · doi:10.1002/(SICI)1097-0207(19990420)44:11<1599::AID-NME556>3.0.CO;2-P
[58] Ho, S., Yang, S.: Wavelet-Galerkin method for solving parabolic equations in finite domains. Finite Elem. Anal. Design 37, 1023-1037 (2001). https://doi.org/10.1016/S0168-874X(01)00040-3 · Zbl 0987.65094 · doi:10.1016/S0168-874X(01)00040-3
[59] Park, C., Tsiotras, P.: Sub-optimal feedback control using a successive wavelet Galerkin algorithm. In: IEEE, Proceedings of the 2003 American Control Conference, (2003) 1926-1931. https://doi.org/10.1109/acc.2003.1243355
[60] Park, C., Tsiotras, P.: Approximations to optimal feedback control using a successive wavelet collocation algorithm. In: Proceedings of the 2003 American Control Conference, (2003) 1950-1955. https://doi.org/10.1109/acc.2003.1243359
[61] Nair, S., Alqassab, M.: Wavelet-Galerkin method for free vibrations of elastic cable. J. Eng. Mech. 3, 350-357 (2003). https://doi.org/10.1061/(ASCE)0733-9399(2003)129:3(350) · doi:10.1061/(ASCE)0733-9399(2003)129:3(350)
[62] Alqassab, M., Nair, S.: Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass. J. Sound Vibr. 270, 191-206 (2004). https://doi.org/10.1016/S0022-460X(03)00490-5 · Zbl 1236.74291 · doi:10.1016/S0022-460X(03)00490-5
[63] Monasse, P., Perrier, V.: Orthonormal wavelet bases adapted for partial differential equations with boundary conditions. SIAM J. Math. Anal. 29, 1040-1065 (1998). https://doi.org/10.1137/S0036141095295127 · Zbl 0921.35036 · doi:10.1137/S0036141095295127
[64] Noguchi, H., Nakagoshi, S.: A modified wavelet Galerkin method for analysis of Mindlin plates. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 44, 610-615 (2001). https://doi.org/10.1299/jsmea.44.610 · doi:10.1299/jsmea.44.610
[65] Kim, Y., Jang, G.: Hat interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis, Int. J. Numer. Methods Eng. 53 (2002) 1575-1592. https://doi.org/10.1002/nme.352 · Zbl 1114.74503 · doi:10.1002/nme.352
[66] Kunoth, A., Dahmen, W., Urban, K.: A wavelet Galerkin method for the stokes equations. Computing 56, 259-301 (1996). https://doi.org/10.1007/BF02238515 · Zbl 0849.65077 · doi:10.1007/BF02238515
[67] Yang, S., Ni, G.: Wavelet-Galerkin method for computations of electromagnetic fields, IEEE Trans. Magn. 34 (1998) 2493. (2396). https://doi.org/10.1109/20.877532 · doi:10.1109/20.877532
[68] Venini, P., Morana, P.: An adaptive wavelet-Galerkin method for an elastic plastic-damage constitutive model: 1D problem. Comput. Methods Appl. Mech. Eng. 190, 5619-5638 (2001). https://doi.org/10.1016/S0045-7825(01)00187-6 · Zbl 1056.74062 · doi:10.1016/S0045-7825(01)00187-6
[69] Aditya, B., Johannes, K., Marianthi, I.: Adaptive multiscale solution of dynamical systems in chemical processes using wavelets. Comput. Chem. Eng. 27, 131-142 (2003). https://doi.org/10.1016/S0098-1354(02)00165-5 · doi:10.1016/S0098-1354(02)00165-5
[70] Pan, J., Wang, D.: A wavelet-Galerkin scheme for the phase field model of microstructural evolution of materials. Comput. Mater. Sci. 29(2004), 221-242 (2003). https://doi.org/10.1016/j.commatsci.2003.09.004 · doi:10.1016/j.commatsci.2003.09.004
[71] Heiko, B., Wolfgang, M.: New approach to refinery process simulation with adaptive composition representation. AIChE J. 50, 633-645 (2004). https://doi.org/10.1002/aic.10057 · doi:10.1002/aic.10057
[72] Liu, Y., Qin, F., Liu, Y., Cen, Z.: The 2D large deformation analysis using Daubechies wavelet. Comput. Mech. 45, 179-187 (2010). https://doi.org/10.1007/s00466-009-0433-0 · Zbl 1398.74469 · doi:10.1007/s00466-009-0433-0
[73] Mitra, M., Gopalakrishnan, S.: Extraction of wave characteristics from wavelet based spectral finite element formulation. Mech. Syst. Signal Process. 20, 2046-2079 (2006). https://doi.org/10.1016/j.ymssp.2005.01.003 · doi:10.1016/j.ymssp.2005.01.003
[74] Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M. Meshless methods: a review and computer implementation aspects, Mechanical Systems and Signal Processing, November 2006, pp. 2046-2079 79 (2008) 763-813. https://doi.org/10.1016/j.ymssp.2005.01.003 · doi:10.1016/j.ymssp.2005.01.003
[75] Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method diffuse approximation and diffuse elements. Comput. Mech. 10, 307-318 (1992). https://doi.org/10.1007/BF00364252 · Zbl 0764.65068 · doi:10.1007/BF00364252
[76] Belytschko, T., Lu, Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229-256 (1994). https://doi.org/10.1002/nme.1620370205 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[77] Belytschko, T., Organ, D., Fleming, M., Krongauz, Y., Krys, P.: Meshless methods: an overview and recent development. Comput. Methods Appl. Mech. Eng. 139, 3-47 (1996). https://doi.org/10.1016/S0045-7825(96)01078-X · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[78] Liu, G., Gu, Y.: A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng. 50, 937-951 (2001). https://doi.org/10.1002/1097-0207(20010210)50:4 · Zbl 1050.74057 · doi:10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
[79] Atluri, S., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117-127 (1998). https://doi.org/10.1007/s004660050346 · Zbl 0932.76067 · doi:10.1007/s004660050346
[80] Wu, D., He, K., Ye, X.: Meshless method based on wavelet function. Recent Adv. Comput. Sci. Inf. Eng. Lecture Notes Electr. Eng. 125, 755-760 (2012). https://doi.org/10.1007/978-3-642-25789-6_102 · doi:10.1007/978-3-642-25789-6_102
[81] Liu Y., Liu Y., Cen, Z.: Daubechies wavelet meshless method for 2-D elastic problems Tsinghua Science and Technology. 13 (2008) 605-608. https://doi.org/10.1016/s1007-0214(08)70099-3 · doi:10.1016/S1007-0214(08)70099-3
[82] Liu Y., Qin F., Liu Y., Cen Z.: A Daubechies wavelet-based method for elastic problems, Eng. Anal. Bound. Elem. February, 114-121, 34 (2010) 114-121. https://doi.org/10.1016/j.enganabound.2009.08.004 · Zbl 1244.74225 · doi:10.1016/j.enganabound.2009.08.004
[83] Hostos, A, Bencomo, J., Cabrera, A.: Simple iterative procedure for the thermal – mechanical analysis of continuous casting processes, using the element-free Galerkin method. J. Thermal Stress. 41(2): 160-181. https://doi.org/10.1080/01495739.2017.1389325 · doi:10.1080/01495739.2017.1389325
[84] He, Y., Yang, H., Deeks, A.: An Element-Free Galerkin Scaled Boundary Method for Steady-State Heat Transfer Problems. Numerical Heat Transfer, Part B: Fundamentals, 64(3), pp. 199-217. https://doi.org/10.1080/10407790.2013.791777 · doi:10.1080/10407790.2013.791777
[85] Harmain, G., Jameel A.: Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method. Mech. Adv. Mater. Struct. pp. 1-14. doi; https://doi.org/10.1080/15376494.2018.1432800
[86] Chen, X., Li, B.: Wavelet-based numerical analysis: a review and classification. Finite Elem. Anal. Design, 81, 14-31. https://doi.org/10.1016/j.finel.2013.11.001 · doi:10.1016/j.finel.2013.11.001
[87] Liu, X., Wang, B., Lai, S.: Element-Free Galerkin method in electromagnetic scattering field computation. J. Electromagn. Waves Appl. 21(14), 1915-1923. https://doi.org/10.1163/156939307783152920 · doi:10.1163/156939307783152920
[88] Wang, B., Liu X., Lai S.: Element-Free Galerkin Method in Electromagnetic Scattering Field Computation. J. Electromagn. Waves Appl. 21(14), 1915-1923. https://doi.org/10.1163/156939307783152920 · doi:10.1163/156939307783152920
[89] Singh, I., Tanaka, M., Endo, M.: Nonlinear Thermal Analysis of Carbon Nanotube Composites by Element Free Galerkin Method. Numerical Heat Transfer, Part A: Applications, 51(11), 1087-1102. https://doi.org/10.1080/10407780601112852 · doi:10.1080/10407780601112852
[90] Valencia, O., Escalonilla, F., Urbinati, F., Lópe, J.: Weight Functions Analysis in Elastostatic Problems for Meshless Element Free Galerkin Method. European Conference on Computational Mechanics, pp.531-531. https://doi.org/10.1007/1-4020-5370-3_531
[91] Zhang X., Zhang, P.: Heterogeneous heat conduction problems by an improved element-free Galerkin method. Numer. Heat Transfer Part B Fundamentals, 65(4), pp. 359-375. https://doi.org/10.1080/10407790.2013.857221 · doi:10.1080/10407790.2013.857221
[92] Wei L., He Y., Yildirim A., Kumar S.: Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional KdV-Burgers-Kuramoto equation. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 93(1), 14-28. https://doi.org/10.1002/zamm.201200003 · Zbl 1263.65098 · doi:10.1002/zamm.201200003
[93] Beylkian, G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 29(6), 1716-1740 (1992). https://doi.org/10.1137/0729097 · Zbl 0766.65007 · doi:10.1137/0729097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.