×

A volume of fluid method based ghost fluid method for compressible multi-fluid flows. (English) Zbl 1391.76524

Summary: A ghost fluid method for compressible multi-fluid flows is presented in an adaptive mesh refinement (AMR) environment, where the volume of fluid method is used to track the interface. Various numerical examples are presented to compare the proposed method with interface capturing methods using pressure-temperature equilibrium and non-equilibrium temperature mixed cell approaches. It is found both mixing models are unable to generate accurate results for strong shock refractions through high acoustic impedance mismatch interfaces. The proposed method is found to be quite robust and can provide relatively reasonable results across a wide variety of flow regimes. The ghost fluid coupling between the fluid solver and the volume of fluid method is designed to be simple and consistent in any spatial dimension on AMR grid.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76T99 Multiphase and multicomponent flows

Software:

SESAME; RAGE; ReALE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chern, I.-L.; Glimm, J.; McBryan, O.; Plohr, B.; Yaniv, S., Front tracking for gas dynamics, J Comput Phys, 62, 83-110, (1986) · Zbl 0577.76068
[2] Glimm, J.; Grove, J. W.; Lindquist, W. B.; McBryan, O.; Tryggvason, G., The bifurcation of tracked scalar waves, SIAM J Sci Comput, 9, 61-79, (1988) · Zbl 0636.65132
[3] Glimm, J.; Grove, J. W.; Li, X.-L.; Shyue, K.-M.; Zhang, Q.; Zeng, Y., Three dimensional front tracking, SIAM J Sci Comput, 19, 703-727, (1998) · Zbl 0912.65075
[4] Agresar, G.; Linderman, J.; Tryggvason, G.; Powell, K., An adaptive, Cartisian, front-tracking method for the motion, deformation, and adhension of circulating cells, J Comput Phys, 142, 346-380, (1998) · Zbl 0935.76047
[5] Tryggvason, G.; Unverdi, S. O., Computations of three-dimensional Rayleigh-Taylor instability, Phys Fluids A, 2, 5, 656, (1990)
[6] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W., A front-tracking method for the computations of multiphase flow, J Comput Phys, 169, 708-759, (2001) · Zbl 1047.76574
[7] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi equations, J Comput Phys, 79, 12-49, (1988) · Zbl 0659.65132
[8] Sethian, J. A., Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, J Differ Geom, 31, 131-161, (1990) · Zbl 0691.65082
[9] Mulder, R.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, J Comput Phys, 100, 209-228, (1992) · Zbl 0758.76044
[10] Sethian, J. A., Level set methods, (1996), Cambridge University Press · Zbl 0859.76004
[11] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J Comput Phys, 152, 457-492, (1999) · Zbl 0957.76052
[12] Osher, S. J.; Fedkiw, R. P., Level sets and dynamic implicit surfaces, (2002), Springer-Verlag New York, ISBN: 0387954821
[13] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 201-225, (1981) · Zbl 0462.76020
[14] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J Comput Phys, 141, 2, 112-152, (—1998—) · Zbl 0933.76069
[15] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput Methods Appl Mech Eng, 99, 235-394, (1992) · Zbl 0763.73052
[16] Hirt, C.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J Comput Phys, 14, 3, 227-253, (1974) · Zbl 0292.76018
[17] Loubère, R.; Maire, P.-H.; Shashkov, M., Reale: a reconnection arbitrary-Lagrangian-Eulerian method in cylindrical geometry, Comput Fluids, 46, 1, 59-69, (2011), <http://www.sciencedirect.com/science/article/pii/S0045793010002252> · Zbl 1305.76066
[18] Breil J, Harribey T, Maire P-H, Shashkov M. A multi-material ReALE method with MOF interface reconstruction. Comput Fluids, in press. doi: 10.1016/j.compfluid.2012.08.015. <http://www.sciencedirect.com/science/article/pii/S0045793012003301>. · Zbl 1290.76094
[19] Richtmyer, R.; Morton, K., Difference methods for initial value problems, (1967), Interscience New York · Zbl 0155.47502
[20] Fedkiw, R., The ghost fluid method for discontinuities and interfaces, (Toro, E. F., Godunov methods, (2001), Kluwer New York), 309-317 · Zbl 1015.76062
[21] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interface in compressible flows, J Comput Phys, 228, 4012-4037, (2009) · Zbl 1171.76046
[22] Terashima, H.; Tryggvason, G., A front-tracking method with projected interface conditions for compressible multi-fluid flows, Comput Fluids, 39, 10, 1804-1814, (2010) · Zbl 1245.76113
[23] Bo, W.; Liu, X.; Glimm, J.; Li, X., A robust front tracking method: verification and application to simulation of the primary breakup of a liquid jet, SIAM J Sci Comput, 33, 1505-1524, (2011) · Zbl 1465.76084
[24] Glimm, J.; Li, X.-L.; Liu, Y.-J.; Xu, Z. L.; Zhao, N., Conservative front tracking with improved accuracy, SIAMJNA, 41, 1926-1947, (2003) · Zbl 1053.35093
[25] Glimm, J.; Li, X.-L.; Liu, Y.-J., Conservative front tracking in one space dimension, Contem Math, 295, 253-264, (2002), [Proceedings of the Joint Summer Research Conference on Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment. Report SUNYSB-AMS-01-16] · Zbl 1014.65082
[26] Glimm, J.; Li, X.-L.; Liu, Y.-J., Conservative front tracking in higher space dimensions, Trans Nanjing Univ Aeronaut Astronaut, 18, 1-15, (2001), [Proceedings of International Workshop on Computational Methods for Continuum Physics and Their Applications (IWCCPA), Nanjing, China]
[27] Colella P, Glas HM, Fergunson RE. Multifluid algorithms for Eulerian finite-difference methods. Tech rep. Lawrence Berkley National Laboratory; 1997. <https://seesar.lbl.gov/anag/publications/colella/Phil1991.pdf>.
[28] Miller, G. H.; Puckett, E. G., A high-order Godunov method for multiple condensed phases, J Comput Phys, 128, 134-164, (1996) · Zbl 0861.65117
[29] C. code team, xrage users manual. Tech Rep LA-CP-08-01044. Los Alamos National Laboratory; 2008.
[30] Gittings, M.; Weaver, R.; Clover, M.; Betlach, T.; Byrne, N.; Coker, R., The rage radiation-hydrodynamic code, Comput Sci Discov, 015005, (2008)
[31] Grove, J., Pressure-velocity equilibrium hydrodynamic models, Acta Math Sci, 30, 563-594, (2010) · Zbl 1240.35397
[32] Steinberg DJ. Equation of state and strength properties of selected materials. Tech Rep. UCRL-MA-106439-rev. Lawrence Livermore National Laboratory; 1996.
[33] SESAME: The Los Alamos National Laboratory equation of state database; 1992. <http://t1web.lanl.gov/doc/SESAME_3Ddatabase_1992.html>.
[34] Lyon SP, Johnson JD. Sesame: The Los Alamos National Laboratory equation of state database. Tech Rep. LA-UR-92-3407. Los Alamos National Laboratory; 1992.
[35] Menikoff, R.; Plohr, B., The Riemann problem for fluid flow of real materials, Rev Mod Phys, 61, 75-130, (1989) · Zbl 1129.35439
[36] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical methods for fluid dynamics, (1982), Academic Press New York), 273-285 · Zbl 0537.76071
[37] Glimm, J.; Grove, J. W.; Zhang, Y., Interface tracking for axisymmetric flows, SIAM J Sci Comput, 24, 208-236, (2002), [lANL report No. LA-UR-01-448] · Zbl 1062.76034
[38] Wang, C.; Liu, T.; Khoo, B., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J Sci Comput, 28, 278-302, (2006) · Zbl 1114.35119
[39] Nourgaliev, R. R.; Dinh, T. N.; Theofanous, T. G., Adaptive characteristics-based matching for compressible multifluid dynamics, J Comput Phys, 213, 2, 500-529, (2006) · Zbl 1136.76396
[40] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J Comput Phys, 87, 171-200, (1990) · Zbl 0694.65041
[41] van Leer, B., Toward the ultimate conservative difference scheme: III. upstream-centered finite-difference schemes for ideal compressible flow, J Comput Phys, 23, 263-275, (1977) · Zbl 0339.76039
[42] van Leer, B., Towards the ultimate conservative difference scheme: V. A second order sequel to godunov’s method, J Comput Phys, 32, 101-136, (1979) · Zbl 1364.65223
[43] Liu, T. G.; Khoo, B. C.; Wang, C. W., The ghost fluid method for compressible gas-water simulation, J Comput Phys, 204, 1, 193-221, (2005) · Zbl 1190.76160
[44] Holmes, R. L.; Fryxell, B.; Gittings, M.; Grove, J. W.; Dimonte, G.; Schneider, M., Richtmyer-Meshkov instability growth: experiment, simulation, and theory, J Fluid Mech, 389, 55-79, (1999), [lA-UR-97-260] · Zbl 0954.76026
[45] Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J Comput Phys, 142, 1, 208-242, (1998) · Zbl 0934.76062
[46] Cocchi, J.-P.; Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J Comput Phys, 137, 2, 265-298, (1997) · Zbl 0934.76055
[47] Bourne, N. K.; Field, J. E., Shock-induced collapse of single cavities in liquids, J Fluid Mech, 244, 225-240, (1992)
[48] Grove, J. W.; Menikoff, R., The anomalous reflection of a shock wave at a material interface, J Fluid Mech, 219, 313-336, (1990)
[49] Hu, X. Y.; Khoo, B. C., An interface interaction method for compressible multifluids, J Comput Phys, 198, 1, 35-64, (2004) · Zbl 1107.76378
[50] Richtmyer, R. D., Taylor instability in shock acceleration of compressible fluids, Commun Pure Appl Math, 13, 297-319, (1960)
[51] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J Comput Phys, 228, 7, 2391-2425, (2009) · Zbl 1156.76434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.