×

A compressible mixture model with phase transition. (English) Zbl 1349.35289

The authors derive a model for multi-component flows with phase transitions and chemical reactions, representing a diffuse interface model. A fluid mixture consisting of \(N\) constituents, subjected to \(N_R\) chemical reactions, is considered. The fluid mixture may exist in two phases, liquid and vapor; the interface between the two phases is modeled by a thin layer. An asymptotic analysis is performed with respect to a small parameter \(\varepsilon\) proportional to the width of the interfacial layer. Two scaling regimes, a non-dissipative regime and a dissipative one are analyzed and the sharp interface limits for these different scaling regimes are determined.

MSC:

35Q35 PDEs in connection with fluid mechanics
35R35 Free boundary problems for PDEs
80A32 Chemically reacting flows
80A22 Stefan problems, phase changes, etc.
76V05 Reaction effects in flows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Blesgen, T., A generalization of the Navier-Stokes equations to two-phase flows, J. Phys. D: Appl. Phys. 32, 32, 1119-1123 (1999)
[2] Kotschote, M., Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type, Arch. Ration. Mech. Anal., 206, 2, 489-514 (2012) · Zbl 1257.35143
[3] Feireisl, E.; Petzeltová, H.; Rocca, E.; Schimperna, G., Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20, 7, 1129-1160 (2010) · Zbl 1200.76155
[4] Witterstein, G., Phase change flows with mass exchange, Adv. Math. Sci. Appl., 21, 2, 559-611 (2011) · Zbl 1256.35069
[5] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Modern Phys., 49, 435-479 (1977)
[6] Gurtin, M. E.; Polignone, D.; Vinals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6, 815-831 (1996) · Zbl 0857.76008
[7] Lowengrub, J. S.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454, 2617-2654 (1998) · Zbl 0927.76007
[8] Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, 1150013 (2012), 40 pages · Zbl 1242.76342
[9] Abels, H., Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289, 45-73 (2009) · Zbl 1165.76050
[10] Abels, H., Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. Math. Anal., 44, 316-340 (2012) · Zbl 1333.76079
[11] Abels, H.; Depner, D.; Garcke, H., Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech. (2012)
[12] Aki, G.; Dreyer, W.; Giesselmann, J.; Kraus, C., A quasi-incompressible diffuse interface model with phase transition, Math. Models Methods Appl. Sci. (2013)
[13] Aki, G.; Daube, J.; Dreyer, W.; Giesselmann, J.; Kraus, C.; Kränkel, M., A diffuse interface model for quasi-incompressible flows: sharp interface limits and numerics, ESAIM Proc., 38, 54-77 (2012) · Zbl 1329.76348
[14] D. Bothe, W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures. WIAS preprint 1909, 2013. url: http://www.wias-berlin.de/publications/wias-publ/run.jsp?template=abstract&type=Preprint&year=2013&number=1909. · Zbl 1317.76082
[15] Sternberg, P., The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal., 101, 3, 209-260 (1988) · Zbl 0647.49021
[16] Luckhaus, S.; Modica, L., The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Ration. Mech. Anal., 107, 1, 71-83 (1989) · Zbl 0681.49012
[17] Owen, N. C.; Rubinstein, J.; Sternberg, P., Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition, Proc. R. Soc. Lond. Ser. A, 429, 1877, 505-532 (1990) · Zbl 0722.49021
[18] Dreyer, W.; Kraus, C., On the van der Waals-Cahn-Hilliard phase-field model and its equilibria conditions in the sharp interface limit, Proc. Roy. Soc. Edinburgh Sect. A, 140, 6, 1161-1186 (2010) · Zbl 1213.80009
[19] Dreyer, W.; Giesselmann, J.; Kraus, C.; Rohde, C., Asymptotic analysis for Korteweg models, Interfaces Free Bound., 14, 105-143 (2012) · Zbl 1241.76375
[20] Caginalp, G.; Fife, P. C., Dynamics of layered interfaces arising from phase boundaries, SIAM J. Appl. Math., 48, 506-518 (1988)
[21] Lagerstrom, P. A., Matched Asymptotic Expansions: Ideas and Techniques (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0666.34064
[22] Garcke, H.; Stinner, B., Second order phase field asymptotics for multi-component systems, Interfaces Free Bound., 8, 131-157 (2006) · Zbl 1106.35116
[23] Benzoni-Gavage, S.; Danchin, R.; Descombes, S.; Jamet, D., Stability issues in the Euler-Korteweg model, Contemp. Math., A.M.S., 426, 103-127 (2007) · Zbl 1119.76029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.