×

Coupled THINC and level set method: a conservative interface capturing scheme with high-order surface representations. (English) Zbl 1416.76158

Summary: In this paper, we propose a simple and accurate numerical method for capturing moving interfaces on fixed Eulerian grids by coupling the tangent of hyperbola interface capturing (THINC) method and level set (LS) method. The innovative and practically-significant aspects of the proposed method, so-called THINC/LS method, lie in (1) representing the interface with polynomial of high-order (arbitrary order in principle) rather than the plane representation commonly used in the piecewise linear interface calculation (PLIC) volume of fluid (VOF) methods, (2) conserving rigorously the mass of the transported VOF field, (3) being able to resolving fine interface structures under mesh resolution, and (4) providing a straightforward and easy-to-code algorithm for 3D implementation. We verified the proposed scheme with the widely used benchmark tests. Numerical results show that this new method can obtain high-order accuracy for interface reconstruction and can produce more accurate results in capturing moving interfaces compared to the classical VOF methods.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows

Software:

SLIC; Basilisk; Gerris
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[2] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[3] Rider, W.; Kothe, D., A marker particle method for interface tracking, (Sixth International Symposium on Computational Fluid Dynamics (ISCFD) (1995))
[4] Rider, W.; Kothe, D., Stretching and tearing interface tracking methods, (12th AIAA Computational Fluid Dynamics Conference (1995))
[5] Tryggvason, G.; Scardovelli, R.; Zaleski, S., Direct Numerical Simulations of Gas-Liquid Multiphase Flows (2011), Cambridge University Press · Zbl 1226.76001
[6] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[7] Youngs, D. L., Time-Dependent Multi-Material Flow with Large Fluid Distortion, 273-285 (1982), Academic Press · Zbl 0537.76071
[8] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys., 113, 134-147 (1994) · Zbl 0809.76064
[9] Rudman, M., Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids, 24, 671-691 (1997) · Zbl 0889.76069
[10] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 112-152 (1998) · Zbl 0933.76069
[11] Scardovelli, R.; Zaleski, S., Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys., 164, 228-237 (2000) · Zbl 0993.76067
[12] Puckett, E. G., A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction, (Proceedings of the Fourth International Symposium on Computational Fluid Dynamics (1991)), 933-938
[13] Pilliod, J. E.; Puckett, E. G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys., 199, 465-502 (2004) · Zbl 1126.76347
[14] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[15] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2003), Springer · Zbl 1026.76001
[16] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[17] Noh, W. F.; Woodward, P., SLIC (simple line interface calculation), Lect. Notes Phys., 59, 273-285 (1976) · Zbl 0382.76084
[18] Youngs, D. L., An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code (1984), Atomic Weapons Research Establishment (AWRE) Design Mathematics Division, Tech. Rep.
[19] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, Int. J. Numer. Methods Fluids, 41, 251-274 (2003) · Zbl 1047.76080
[20] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J. Comput. Phys., 225, 2301-2319 (2007) · Zbl 1118.76048
[21] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical area-preserving volume-of-fluid advection method, J. Comput. Phys., 192, 355-364 (2003) · Zbl 1032.76632
[22] Cervone, A.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical predictor-corrector advection scheme and its application to the volume fraction function, J. Comput. Phys., 228, 406-419 (2009) · Zbl 1158.76027
[23] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572-600 (2003) · Zbl 1076.76002
[24] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838-5866 (2009) · Zbl 1280.76020
[25] Popinet, S., Gerris Flow Solver (2017)
[26] Popinet, S., Basilisk (2017)
[27] López, J.; Hernández, J.; Gómez, P.; Faura, F., A volume of fluid method based on multidimensional advection and spline interface reconstruction, J. Comput. Phys., 195, 718-742 (2004) · Zbl 1115.76358
[28] López, J.; Zanzi, C.; Gómez, P.; Faura, F.; Hernández, J., A new volume of fluid method in three dimensions - Part II: piecewise-planar interface reconstruction with cubic-Bézier fit, Int. J. Numer. Methods Fluids, 58, 923-944 (2008) · Zbl 1151.76556
[29] Diwakar, S.; Das, S. K.; Sundararajan, T., A quadratic spline based interface (QUASI) reconstruction algorithm for accurate tracking of two-phase flows, J. Comput. Phys., 228, 9107-9130 (2009) · Zbl 1388.76243
[30] Xiao, F.; Honma, Y.; Kono, T., A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Methods Fluids, 48, 1023-1040 (2005) · Zbl 1072.76046
[31] Xiao, F.; Ii, S.; Chen, C., Revisit to the THINC scheme: a simple algebraic VOF algorithm, J. Comput. Phys., 230, 7086-7092 (2011) · Zbl 1408.76547
[32] Ii, S.; Sugiyama, K.; Takeuchi, S.; Takagi, S.; Matsumoto, Y.; Xiao, F., An interface capturing method with a continuous function: the THINC method with multi-dimensional reconstruction, J. Comput. Phys., 231, 2328-2358 (2012) · Zbl 1427.76205
[33] Ii, S.; Xie, B.; Xiao, F., An interface capturing method with a continuous function: the THINC method on unstructured triangular and tetrahedral meshes, J. Comput. Phys., 259, 260-269 (2014) · Zbl 1349.65372
[34] Xie, B.; Ii, S.; Xiao, F., An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: the THINC method with quadratic surface representation, Int. J. Numer. Methods Fluids, 76, 1025-1042 (2014)
[35] Xie, B.; Xiao, F., Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: the THINC method with quadratic surface representation and Gaussian quadrature, J. Comput. Phys., 349, 415-440 (2017) · Zbl 1380.76111
[36] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (1999), Cambridge University Press · Zbl 0973.76003
[37] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 83-116 (2002) · Zbl 1021.76044
[38] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 301-337 (2000) · Zbl 0977.76071
[39] Ménard, T.; Tanguy, S.; Berlemont, A., Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet, Int. J. Multiph. Flow, 33, 510-524 (2007)
[40] Yang, X.; James, A. J.; Lowengrub, J.; Zheng, X.; Cristini, V., An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, J. Comput. Phys., 217, 364-394 (2006) · Zbl 1160.76377
[41] Sun, D.; Tao, W., A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows, Int. J. Heat Mass Transf., 53, 645-655 (2010) · Zbl 1303.76126
[42] Aniszewski, W.; Ménard, T.; Marek, M., Volume of Fluid (VOF) type advection methods in two-phase flow: a comparative study, Comput. Fluids, 97, 52-73 (2014) · Zbl 1391.76764
[43] Zhao, H., A fast sweeping method for eikonal equations, Math. Comput., 74, 603-627 (2005) · Zbl 1070.65113
[44] Jiang, G.-S.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 2126-2143 (2000) · Zbl 0957.35014
[45] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[46] Gottlieb, S., On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., 25, 105-128 (2005) · Zbl 1203.65166
[47] Cummins, S. J.; Francois, M. M.; Kothe, D. B., Estimating curvature from volume fractions, Comput. Struct., 83, 425-434 (2005)
[48] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
[49] Harvie, D. J.; Fletcher, D. F., A new volume of fluid advection algorithm: the stream scheme, J. Comput. Phys., 162, 1-32 (2000) · Zbl 0964.76068
[50] Harvie, D. J.; Fletcher, D. F., A new volume of fluid advection algorithm: the defined donating region scheme, Int. J. Numer. Methods Fluids, 35, 151-172 (2001) · Zbl 0991.76062
[51] Ubbink, O.; Issa, R., A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153, 26-50 (1999) · Zbl 0955.76058
[52] Yokoi, K., Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm, J. Comput. Phys., 226, 1985-2002 (2007) · Zbl 1388.76281
[53] Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F., An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows, J. Comput. Phys., 208, 51-74 (2005) · Zbl 1115.76359
[54] Aulisa, E.; Manservisi, S.; Scardovelli, R., A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows, J. Comput. Phys., 188, 611-639 (2003) · Zbl 1127.76346
[55] Jemison, M.; Loch, E.; Sussman, M.; Shashkov, M.; Arienti, M.; Ohta, M.; Wang, Y., A coupled level set-moment of fluid method for incompressible two-phase flows, J. Sci. Comput., 54, 454-491 (2013) · Zbl 1352.76091
[56] LeVeque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 627-665 (1996) · Zbl 0852.76057
[57] Hernández, J.; López, J.; Gómez, P.; Zanzi, C.; Faura, F., A new volume of fluid method in three dimensions - Part I: multidimensional advection method with face-matched flux polyhedra, Int. J. Numer. Methods Fluids, 58, 897-921 (2008) · Zbl 1151.76552
[58] Jofre, L.; Lehmkuhl, O.; Castro, J.; Oliva, A., A 3-D volume-of-fluid advection method based on cell-vertex velocities for unstructured meshes, Comput. Fluids, 94, 14-29 (2014) · Zbl 1391.76554
[59] Xie, B.; Jin, P.; Xiao, F., An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method, Int. J. Multiph. Flow, 89, 375-398 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.