×

Solving dynamic contact problems with local refinement in space and time. (English) Zbl 1239.74066

Summary: Frictional dynamic contact problems with complex geometries are a challenging task-from the computational as well as from the analytical point of view-since they generally involve space and time multi-scale aspects.
To be able to reduce the complexity of this kind of contact problem, we employ a non-conforming domain decomposition method in space, consisting of a coarse global mesh not resolving the local structure and an overlapping fine patch for the contact computation. This leads to several benefits: First, we resolve the details of the surface only where it is needed, i.e., in the vicinity of the actual contact zone. Second, the subproblems can be discretized independently of each other which enables us to choose a much finer time scale on the contact zone than on the coarse domain. Here, we propose a set of interface conditions that yield optimal a priori error estimates on the fine-meshed subdomain without any artificial dissipation. Further, we develop an efficient iterative solution scheme for the coupled problem that is robust with respect to jumps in the material parameters. Several complex numerical examples illustrate the performance of the new scheme.

MSC:

74M15 Contact in solid mechanics
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

NewtonLib; RODAS
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Ben Belgacem, F., The mortar finite element method with Lagrange multipliers, Numer. Math., 84, 173-197 (1999) · Zbl 0944.65114
[2] Bernardi, C.; Maday, Y.; Patera, A. T., A new nonconforming approach to domain decomposition: The mortar element method, (Brezis, H.; Lions, J.-L., Nonlinear Partial Differential Equations and Their Applications. Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XI (1994), Pitman), 13-51 · Zbl 0797.65094
[3] Wohlmuth, B. I., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 989-1012 (2000) · Zbl 0974.65105
[4] Quarteroni, A.; Valli, A., Domain Decomposition Methods for Partial Differential Equations (1999), Oxford University Press · Zbl 0931.65118
[5] Smith, B.; Bjørstad, P. E.; Gropp, W., Domain decomposition, (Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge Univ. Press)
[6] Toselli, A.; Widlund, O. B., Domain Decomposition Methods - Algorithms and Theory (2005), Springer: Springer Berlin Heidelberg · Zbl 1069.65138
[7] Bjørstad, P. E.; Widlund, O. B., Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal., 23, 1097-1120 (1986) · Zbl 0615.65113
[8] Goldfeld, P.; Pavarino, L. F.; Widlund, O. B., Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity, Numer. Math., 95, 283-324 (2003) · Zbl 1169.65346
[9] Klawonn, A.; Widlund, O. B., FETI and Neumann-Neumann iterative substructuring methods: Connections and new results, Comm. Pure Appl. Math., 54, 57-90 (2001) · Zbl 1023.65120
[10] Eck, C.; Jarušek, J.; Krbec, M., Unilateral Contact Problems: Variational Methods and Existence Theorems (2005), CRC Press Taylor & Francis Group: CRC Press Taylor & Francis Group Boca Raton · Zbl 1079.74003
[11] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics, vol. 8, Society for Industrial Mathematics, Philadelphia, 1988.; N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics, vol. 8, Society for Industrial Mathematics, Philadelphia, 1988. · Zbl 0685.73002
[12] Laursen, T. A., Computational Contact and Impact Mechanics (2002), Springer: Springer Berlin, Heidelberg · Zbl 0996.74003
[13] Wriggers, P., Computational Contact Mechanics (2002), J. Wiley & Sons Ltd.
[14] Wohlmuth, B. I., Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer., 20, 569-734 (2011) · Zbl 1432.74176
[15] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Optim., 13, 865-888 (2003) · Zbl 1080.90074
[16] Hüeber, S.; Stadler, G.; Wohlmuth, B. I., A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction, SIAM J. Sci. Comput., 30, 572-596 (2008) · Zbl 1158.74045
[17] Hüeber, S.; Wohlmuth, B. I., A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194, 3147-3166 (2005) · Zbl 1093.74056
[18] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg., 92, 353-375 (1991) · Zbl 0825.76353
[19] Christensen, P. W.; Klarbring, A.; Pang, J. S.; Strömberg, N., Formulation and comparison of algorithms for frictional contact problems, Int. J. Numer. Methods Engrg., 42, 145-173 (1998) · Zbl 0917.73063
[20] Dembo, R. S.; Eisenstat, S. C.; Steinhaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 400-408 (1982) · Zbl 0478.65030
[21] Deuflhard, P., Newton Methods for Nonlinear Problems (2004), Springer: Springer Berlin, Heidelberg
[22] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 16-32 (1996) · Zbl 0845.65021
[23] Simo, J.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, Z. Angew. Math. Phys., 43, 757-792 (1992) · Zbl 0758.73001
[24] Betsch, P.; Steinmann, P., Conservation properties of a time FE method - Part II: Time-stepping schemes for non-linear elastodynamics, Internat. J. Numer. Methods Engrg., 50, 1931-1955 (2001) · Zbl 1134.74402
[25] Gonzalez, O., Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comp. Methods Appl. Mech. Engrg., 190, 1763-1783 (2000) · Zbl 1005.74075
[26] Hauret, P.; Le Tallec, P., Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Engrg., 195, 4890-4916 (2006) · Zbl 1177.74379
[27] Chawla, V.; Laursen, T. A., Energy consistent algorithms for frictional contact problems, Internat. J. Numer. Methods Engrg., 42, 799-827 (1998) · Zbl 0916.73078
[28] Hager, C.; Hüeber, S.; Wohlmuth, B. I., A stable energy conserving approach for frictional contact problems based on quadrature formulas, Int. J. Numer. Methods Engrg., 73, 205-225 (2008) · Zbl 1166.74050
[29] Hager, C.; Wohlmuth, B. I., Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements, SIAM J. Numer. Anal., 47, 1863-1885 (2009) · Zbl 1406.74631
[30] Khenous, H. B.; Laborde, P.; Renard, Y., Mass redistribution method for finite element contact problems in elastodynamics, Eur. J. Mech. A/Solids, 27, 918-932 (2008) · Zbl 1147.74044
[31] Daniel, W. J.T., Subcycling first- and second-order generalizations of the trapezoidal rule, Int. J. Numer. Methods Engrg., 42, 1091-1119 (1998) · Zbl 0912.73078
[32] Daniel, W. J.T., A study of the stability of subcycling algorithms in structural dynamics, Comput. Methods Appl. Mech. Engrg., 156, 1-13 (1998) · Zbl 0967.70005
[33] Smolinski, P.; Sleigh, S.; Belytschko, T., Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations, Comput. Mech., 18, 236-244 (1996) · Zbl 0865.73075
[34] Combescure, A.; Gravouil, A., A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis, Comput. Methods Appl. Mech. Engrg., 191, 1129-1157 (2002) · Zbl 1021.74042
[35] Gravouil, A.; Combescure, A., Multi-time-step explicit-implicit method for non-linear structural dynamics, Int. J. Numer. Methods Engrg., 50, 199-225 (2001) · Zbl 0998.74033
[36] Prakash, A.; Hjelmstad, K. D., A FETI-based multi-time-step coupling method for Newmark schemes in structural dynamics, Int. J. Numer. Methods Engrg., 61, 2183-2204 (2004) · Zbl 1075.74668
[37] Mahjoubi, N.; Krenk, S., Multi-time-step domain coupling method with energy control, Int. J. Numer. Methods Engrg., 83, 1700-1718 (2010) · Zbl 1202.74069
[38] Ciarlet, P. G., Mathematical Elasticity, vol. I (1998), North Holland
[39] C. Hager, P. Hauret, P. Le Tallec, B.I. Wohlmuth, Overlapping domain decomposition for multiscale dynamic contact problems, 2010, IANS Preprint 2010/007, Universität Stuttgart.; C. Hager, P. Hauret, P. Le Tallec, B.I. Wohlmuth, Overlapping domain decomposition for multiscale dynamic contact problems, 2010, IANS Preprint 2010/007, Universität Stuttgart. · Zbl 1239.74066
[40] Braess, D., Finite Elements (1997), Cambridge University Press
[41] Brenner, S. C., Korn’s inequalities for piecewise \(H^1\) vector fields, Math. Comput., 73, 1067-1087 (2003) · Zbl 1055.65118
[42] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1991), Springer: Springer Berlin, Heidelberg · Zbl 0729.65051
[43] Wohlmuth, B. I., Discretization Methods and Iterative Solvers based on Domain Decomposition (2001), Springer: Springer Berlin · Zbl 0966.65097
[44] Flemisch, B.; Wohlmuth, B. I., Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D, Comput. Methods Appl. Mech. Engrg., 196, 1589-1602 (2007) · Zbl 1173.74416
[45] Hughes, T. J.R., The Finite Element Method: Linear, Static and Dynamic Finite Element Analysis (1987), Prentice-Hall · Zbl 0634.73056
[46] Hauret, P.; Le Tallec, P., Two-scale Dirichlet-Neumann preconditioners for elastic problems with boundary refinements, Comput. Methods Appl. Mech. Engrg., 196, 1574-1588 (2007) · Zbl 1173.74423
[47] Xu, X.; Qin, L., Spectral analysis of Dirichlet-Neumann operators and optimized Schwarz methods with Robin transmission conditions, SIAM J. Numer. Anal., 47, 4540-4568 (2010) · Zbl 1209.65134
[48] Le Tallec, P., Numerical methods for nonlinear three-dimensional elasticity, (Handbook of Numerical Analysis, vol. 3 (1994), North Holland), 465-622 · Zbl 0875.73234
[49] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer: Springer Berlin, Heidelberg · Zbl 0934.74003
[50] Facchinei, F.; Pang, J.-S., Finite-Dimensional Variational Inequalities and Complementary Problems (2003), Springer: Springer New York
[51] Dai, H.-H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127, 193-207 (1998) · Zbl 0910.73036
[52] Hüeber, S.; Wohlmuth, B. I., An optimal a priori error estimate for non-linear multibody contact problems, SIAM J. Numer. Anal., 43, 157-173 (2005) · Zbl 1083.74047
[53] Wriggers, P., Nichtlineare Finite-Element-Methoden (2001), Springer: Springer Berlin, Heidelberg · Zbl 0972.74002
[54] Hager, C.; Wohlmuth, B. I., Nonlinear complementarity functions for plasticity problems with frictional contact, Comput. Methods Appl. Mech. Engrg., 198, 3411-3427 (2009) · Zbl 1230.74225
[55] Laursen, T. A.; Love, G. R., Improved implicit integrators for transient impact problems – geometric admissibility within the conserving framework, Internat. J. Numer. Methods Engrg., 53, 245-274 (2002) · Zbl 1112.74526
[56] Krause, R., A nonsmooth multiscale method for solving frictional contact problems in 2D and 3D with multigrid efficiency, SIAM J. Sci. Comput., 31, 1399-1423 (2009) · Zbl 1193.74103
[57] C. Hager, Robust Numerical Algorithms for Dynamic Frictional Contact Problems with Different Time and Space Scales, Ph.D. Thesis, Universität Stuttgart, 2010.; C. Hager, Robust Numerical Algorithms for Dynamic Frictional Contact Problems with Different Time and Space Scales, Ph.D. Thesis, Universität Stuttgart, 2010.
[58] Hauret, P.; Salomon, J.; Weiß, A.; Wohlmuth, B. I., Energy consistent co-rotational schemes for frictional contact problems, SIAM J. Sci. Comput., 30, 2488-2511 (2008) · Zbl 1180.35027
[59] Scott, L. R.; Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput., 54, 483-493 (1990) · Zbl 0696.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.