×

A model of somitogenesis. (English) Zbl 1458.92013

Summary: A quantitative description of the molecular networks that sustain morphogenesis is one of the main challenges of developmental biology. In particular, a molecular understanding of the segmentation of the antero-posterior axis in vertebrates has yet to be achieved. This process known as somitogenesis is believed to result from the interactions between a well-studied genetic oscillator and a less established posterior-moving determination wavefront. Here we describe a molecular model for somitogenesis that couples a moving morphogen wavefront with the somitogenetic oscillator. The wavefront is due to a switch between stable states that results from reciprocal negative feedbacks of retinoic acid (RA) on the activation of a kinase ErK and of ErK on RA synthesis. We suggest a molecular mechanism by which that switch can be triggered by the somitogenetic clock. The model quantitatively accounts for the shortening of the pre-somitic mesoderm (PSM) in zebrafish in response to the decrease during somitogenesis in the concentration of a morphogen (Fgf8). The generality and robustness of the model allows for its validation (or invalidation) in other model organisms.

MSC:

92C15 Developmental biology, pattern formation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851-1112 (1993) · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[2] Dequéant, M.-L., Pourquié, O.: Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370-382 (2008). https://doi.org/10.1038/nrg2320 · doi:10.1038/nrg2320
[3] Cooke, J., Zeeman, E.C.: A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455-476 (1976). https://doi.org/10.1016/S0022-5193(76)80131-2 · doi:10.1016/S0022-5193(76)80131-2
[4] Kulesa, P.M., Fraser, S.E.: Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991-995 (2002). https://doi.org/10.1126/science.1075544 · doi:10.1126/science.1075544
[5] Delfini, M.-C., Dubrulle, J., Malapert, P., Chal, J., Pourquié, O.: Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc. Natl. Acad. Sci. U.S.A. 102, 11343-11348 (2005). https://doi.org/10.1073/pnas.0502933102 · doi:10.1073/pnas.0502933102
[6] Durbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A., Shanmugalingam, S., Guthrie, B., Lindberg, R., Holder, N.: Eph signaling is required for segmentation and differentiation of the somites. Genes Dev. 12, 3096-3109 (1998). https://doi.org/10.1101/gad.12.19.3096 · doi:10.1101/gad.12.19.3096
[7] Pourquié, O.: Vertebrate somitogenesis. Annu. Rev. Cell Dev. Biol. 17, 311-350 (2001) · doi:10.1146/annurev.cellbio.17.1.311
[8] Schröter, C., Herrgen, L., Cardona, A., Brouhard, G.J., Feldman, B., Oates, A.C.: Dynamics of zebrafish somitogenesis. Dev. Dyn. 237, 545-553 (2008) · doi:10.1002/dvdy.21458
[9] Pourquié, O.: Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650-663 (2011). https://doi.org/10.1016/j.cell.2011.05.011 · doi:10.1016/j.cell.2011.05.011
[10] Gomez, C., Ozbudak, E.M., Wunderlich, J., Baumann, D., Lewis, J., Pourquié, O.: Control of segment number in vertebrate embryos. Nature 454, 335-339 (2008). https://doi.org/10.1038/nature07020 · doi:10.1038/nature07020
[11] Dubrulle, J., McGrew, M.J., Pourquié, O.: FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219-232 (2001) · doi:10.1016/S0092-8674(01)00437-8
[12] Sawada, A., Shinya, M., Jiang, Y.J., Kawakami, A., Kuroiwa, A., Takeda, H.: Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development. 128, 4873-4880 (2001)
[13] Dubrulle, J., Pourquié, O.: fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419-422 (2004). https://doi.org/10.1038/nature02216 · doi:10.1038/nature02216
[14] Diez del Corral, R., Olivera-Martinez, I., Goriely, A., Gale, E., Maden, M., Storey, K.: Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65-79 (2003) · doi:10.1016/S0896-6273(03)00565-8
[15] Moreno, T.A., Kintner, C.: Regulation of segmental patterning by retinoic acid signaling during xenopus somitogenesis. Dev. Cell 6, 205-218 (2004). https://doi.org/10.1016/S1534-5807(04)00026-7 · doi:10.1016/S1534-5807(04)00026-7
[16] Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S.-I., Miyawaki, A.: Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496, 363-366 (2013). https://doi.org/10.1038/nature12037 · doi:10.1038/nature12037
[17] Niederreither, K., Vermot, J., Le Roux, I., Schuhbaur, B., Chambon, P., Dollé, P.: The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development. 130, 2525-2534 (2003) · doi:10.1242/dev.00463
[18] Kam, R.K.T., Deng, Y., Chen, Y., Zhao, H.: Retinoic acid synthesis and functions in early embryonic development. Cell Biosci. 2, 11 (2012). https://doi.org/10.1186/2045-3701-2-11 · doi:10.1186/2045-3701-2-11
[19] Blentic, A., Gale, E., Maden, M.: Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev. Dyn. 227, 114-127 (2003). https://doi.org/10.1002/dvdy.10292 · doi:10.1002/dvdy.10292
[20] Sakai, Y., Meno, C., Fujii, H., Nishino, J., Shiratori, H., Saijoh, Y., Rossant, J., Hamada, H.: The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213-225 (2001) · doi:10.1101/gad.851501
[21] Pownall, M.E., Isaacs, H.V.: FGF signalling in vertebrate development. Morgan & Claypool Life Sciences, San Rafael (CA) (2010) · doi:10.4199/C00011ED1V01Y201004DEB002
[22] Goldbeter, A., Gonze, D., Pourquié, O.: Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn. 236, 1495-1508 (2007). https://doi.org/10.1002/dvdy.21193 · doi:10.1002/dvdy.21193
[23] Hamade, A., Deries, M., Begemann, G., Bally-Cuif, L., Genêt, C., Sabatier, F., Bonnieu, A., Cousin, X.: Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev. Biol. 289, 127-140 (2006). https://doi.org/10.1016/j.ydbio.2005.10.019 · doi:10.1016/j.ydbio.2005.10.019
[24] Moreno, T.A., Jappelli, R., Belmonte, J.C.I., Kintner, C.: Retinoic acid regulation of the Mesp-ripply feedback loop during vertebrate segmental patterning. Dev. Biol. 315, 317-330 (2008). https://doi.org/10.1016/j.ydbio.2007.12.038 · doi:10.1016/j.ydbio.2007.12.038
[25] Hayashi, S., Shimoda, T., Nakajima, M., Tsukada, Y., Sakumura, Y., Dale, J.K., Maroto, M., Kohno, K., Matsui, T., Bessho, Y.: Sprouty4, an FGF inhibitor, displays cyclic gene expression under the control of the notch segmentation clock in the mouse PSM. PLoS ONE 4, e5603 (2009). https://doi.org/10.1371/journal.pone.0005603 · doi:10.1371/journal.pone.0005603
[26] Sari, D.W.K., Akiyama, R., Naoki, H., Ishijima, H., Bessho, Y., Matsui, T.: Time-lapse observation of stepwise regression of Erk activity in zebrafish presomitic mesoderm. Sci. Rep. 8, 4335 (2018). https://doi.org/10.1038/s41598-018-22619-9 · doi:10.1038/s41598-018-22619-9
[27] Zhang, W., Ducos, B., Delagrange, M., Vriz, S., Bensimon, D.: Quantitative study of the somitogenetic wavefront in zebrafish. Development (2018). https://doi.org/10.1101/419705 · doi:10.1101/419705
[28] Akiyama, R., Masuda, M., Tsuge, S., Bessho, Y., Matsui, T.: An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 141, 1104-1109 (2014). https://doi.org/10.1242/dev.098905 · doi:10.1242/dev.098905
[29] Pasini, A., Manenti, R., Rothbächer, U., Lemaire, P.: Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate ciona intestinalis. PLoS ONE 7, e46193 (2012). https://doi.org/10.1371/journal.pone.0046193 · doi:10.1371/journal.pone.0046193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.