×

A diagnostic thau observer for a class of unmanned vehicles. (English) Zbl 1245.70004

Summary: This paper addresses the problem of sensor fault detection for a wide class of Unmanned Vehicles (UVs). First a general model for UVs, based on the dynamics of a 6 Degrees Of Freedom (6-DOF) rigid body, subject to gravity and actuation forces, is presented. This model is shown to satisfy the necessary conditions to the existence of a non-linear observer (Thau) when proper assumptions for the actuation forces are made. The observer can thus be used to generate diagnostic residuals inside a Fault Detection (FD) system. Finally, the proposed approach is customized for sensor fault detection on an unmanned quad-rotor vehicle, and simulation results show the effectiveness of the adopted solution.

MSC:

70E15 Free motion of a rigid body
93C85 Automated systems (robots, etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altug, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2002)
[2] Bethke, B., Valenti, M., How, J.P.: Uav task assignment. IEEE Trans. Robot. Autom. 15(1), 39–44 (2008)
[3] Castillo, P., Lozano, R., Dzul, A.E.: Modelling and control of mini-flying machines. AIC Advances in Industrial Control. Springer (2005)
[4] Chen, J., Patton, R.J.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, London (1999) · Zbl 0920.93001
[5] Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics (2002)
[6] Heredia, G., Ollero, A., Bejar, M., Mahtani, R.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18(2):90–99 (2007) · doi:10.1016/j.mechatronics.2007.09.007
[7] Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall (2002) · Zbl 1003.34002
[8] Leonessa, A.: Underwater robots: motion and force control of vehicle-manipulator systems (g. antonelli; 2006) [book review]. IEEE Control Syst. Mag. 28(5), 138–139 (2008) · doi:10.1109/MCS.2008.927329
[9] Lyon, D.H.: A military perspective on small unmanned aerial vehicles. IEEE Instrum. Meas. Mag. 7(3), 27–31 (2004) · doi:10.1109/MIM.2004.1337910
[10] Meskin, N., Khorasani, K.: Actuator fault detection and isolation for a network of unmanned vehicles. IEEE Trans. Automat. Contr. 54(4), 835–840 (2009) · Zbl 1175.93142 · doi:10.1109/TAC.2008.2009675
[11] Microstrain. 3DM-GX1 Datasheet (2010)
[12] Mohr, B.B., Fitzpatrick, D.L.: Micro air vehicle navigation system. IEEE Aerosp. Electron. Syst. Mag. 23(4), 19–24 (2008) · doi:10.1109/MAES.2008.4493438
[13] Mokhtari, A., Benallegue, A.: Dynamic feedback controller of euler angles and wind parameters estimation for a quadrotor unmanned aerial vehicle. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2359–2366 (2004)
[14] Monteriu, A., Asthan, P., Valavanis, K., Longhi, S.: Model-based sensor fault detection and isolation system for unmanned ground vehicles: theoretical aspects (part i). In: 2007 IEEE International Conference on Robotics and Automation, pp. 2736–2743 (2007)
[15] Monteriù, A., Asthana, P., Valavanis, K.P., Longhi, S.: Real-time model-based fault detection and isolation for ugvs. J. Intell. Robot. Syst. 56(4), 425–439 (2009) · Zbl 1203.68258 · doi:10.1007/s10846-009-9321-2
[16] Patton, R.J., Frank, P.M., Clark, R.N.: Fault diagnosis in dynamic systems: theory and application. Prentice-Hall, Inc. (1989)
[17] Patton, R.J., Frank, P.M., Clark, R.N.: Issues of Fault Diagnosis for Dynamic Systems. Springer (2000)
[18] Qi, J., Jiang, Z., Zhao, X., Han, J.: UKF-based rotorcraft UAV Fault adaptive control for actuator failure. In: ROBIO 2007 IEEE International Conference on Robotics and Biomimetics, 2007, pp. 1545–1550 (2007)
[19] Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H control structure for a quadrotor helicopter. Automatica 46(1):29–39 (2010) · Zbl 1214.93042 · doi:10.1016/j.automatica.2009.10.018
[20] Rago, C., Prasanth, R., Mehra, R.K., Fortenbaugh, R., S.S.C. Inc, Woburn, M.A.: Failure detection and identification and fault tolerant control using the IMM-KF with applications to the Eagle-Eye UAV. In: Proceedings of the 37th IEEE Conference on Decision and Control, 1998, vol. 4 (1998)
[21] Rauch, H.E.: Intelligent fault diagnosis and control reconfiguration. IEEE Control Syst. Mag. 14(3), 6–12 (1994) · doi:10.1109/37.291462
[22] Salazar, S., Romero, H., Lozano, R., Castillo, P.: Modeling and real-time stabilization of an aircraft having eight rotors. J. Intell. Robot. Syst. 54(1), 455–470 (2009) · Zbl 05537198 · doi:10.1007/s10846-008-9274-x
[23] Tayebi, A., McGilvray, S.: Attitude stabilization of a vtol quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006) · doi:10.1109/TCST.2006.872519
[24] Thau, F.E.: Observing the state of non-linear dynamic systems. Int. J. Control 17(3), 471–479 (1973) · Zbl 0249.93006 · doi:10.1080/00207177308932395
[25] Valavanis, K.P., Gracanin, D., Matijasevic, M., Kolluru, R., Demetriou, G.A.: Control architectures for autonomous underwater vehicles. IEEE Control Syst. Mag. 17(6), 48–64 (1997) · doi:10.1109/37.642974
[26] Zhang, X., Polycarpou, M.M., Parisini, T.: Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation. Automatica 46(2), 290–299 (2010) · Zbl 1205.93066 · doi:10.1016/j.automatica.2009.11.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.