×

Probability theory in statistical physics, percolation, and other random topics: the work of C. Newman. (English) Zbl 1446.82084

Sidoravicius, Vladas (ed.), Sojourns in probability theory and statistical physics. I. Spin glasses and statistical mechanics, a festschrift for Charles M. Newman. Singapore: Springer; Shanghai: NYU Shanghai. Springer Proc. Math. Stat. 298, 1-38 (2019).
Summary: In the introduction to this volume, we discuss some of the highlights of the research career of Chuck Newman. This introduction is divided into two main sections, the first covering Chuck’s work in statistical mechanics and the second his work in percolation theory, continuum scaling limits, and related topics.
For the entire collection see [Zbl 1429.60003].

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82B43 Percolation
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
81R40 Symmetry breaking in quantum theory
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
82D40 Statistical mechanics of magnetic materials
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60J65 Brownian motion
82B27 Critical phenomena in equilibrium statistical mechanics
60C05 Combinatorial probability
82-03 History of statistical mechanics
01A61 History of mathematics in the 21st century

Biographic References:

Newman, Chuck
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aizenman, M.: Scaling limit for the incipient spanning clusters. In: Mathematics of Multiscale Materials, pp. 1-24. Springer, New York (1998) · Zbl 0941.74013
[2] Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489-526 (1987) · Zbl 0618.60098 · doi:10.1007/BF01212322
[3] Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419-453 (1999) · Zbl 0944.60022 · doi:10.1215/S0012-7094-99-09914-3
[4] Aizenman, M., Burchard, A., Newman, C.M., Wilson, D.B.: Scaling limits for minimal and random spanning trees in two dimensions. Random Struct. Algorithms 15(3-4), 319-367 (1999) · Zbl 0939.60031 · doi:10.1002/(SICI)1098-2418(199910/12)15:3/4<319::AID-RSA8>3.0.CO;2-G
[5] Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: Discontinuity of the magnetization in one-dimensional \(1/|x-y|^2\) Ising and Potts models. J. Stat. Phys. 50, 1-40 (1988) · Zbl 1084.82514 · doi:10.1007/BF01022985
[6] Aizenman, M., Fisher, D.S.: Unpublished
[7] Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Commun. Math. Phys. 111(4), 505-531 (1987) · Zbl 0642.60102 · doi:10.1007/BF01219071
[8] Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1), 107-143 (1984) · Zbl 0586.60096 · doi:10.1007/BF01015729
[9] Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one dimensional \(1/|x-y|^2\) percolation models. Commun. Math. Phys. 107(4), 611-647 (1986) · Zbl 0613.60097 · doi:10.1007/BF01205489
[10] Aizenman, M., Wehr, J.: Rounding effects of quenched randomness on first-order phase transitions. Commun. Math. Phys. 130, 489-528 (1990) · Zbl 0714.60090 · doi:10.1007/BF02096933
[11] Arguin, L.P., Damron, M., Newman, C.M., Stein, D.L.: Uniqueness of ground states for short-range spin glasses in the half-plane. Commun. Math. Phys. 300, 641-657 (2010) · Zbl 1203.82101 · doi:10.1007/s00220-010-1130-8
[12] Arguin, L.P., Newman, C.M., Stein, D.L.: Thermodynamic identities and symmetry breaking in short-range spin glasses. Phys. Rev. Lett. 115, 187-202 (2015) · doi:10.1103/PhysRevLett.115.187202
[13] Arguin, L.P., Newman, C.M., Stein, D.L., Wehr, J.: Fluctuation bounds for interface free energies in spin glasses. J. Stat. Phys. 156, 221-238 (2014) · Zbl 1305.82030 · doi:10.1007/s10955-014-1009-8
[14] Arguin, L.P., Newman, C.M., Stein, D.L., Wehr, J.: Fluctuation bounds in spin glasses at zero temperature. J. Stat. Phys. 165, 1069-1078 (2016) · Zbl 1342.82077 · doi:10.1007/s10955-016-1516-x
[15] Arous, G.B., Cerný, J.: Dynamics of trap models. In: Mathematical Statistical Physics Lecture Notes, vol. LXXXIII, Les Houches Summer School, pp. 331-394. North-Holland, Amsterdam (2006) · Zbl 1458.82019
[16] Arratia, R.: Coalescing Brownian motions on the line. Ph.D. Thesis, Univ. Wisconsin, Madison (1979)
[17] Arratia, R.: Coalescing Brownian motions and the voter model on \(F (1981)\). Unpiblished manuscript
[18] Aspelmeier, T., Katzgraber, H.G., Larson, D., Moore, M.A., Wittmann, M., Yeo, J.: Finite-size critical scaling in Ising spin glasses in the mean-field regime. Phys. Rev. E 93, 032123 (2016) · doi:10.1103/PhysRevE.93.032123
[19] Auffinger, A., Damron, M.: Differentiability at the edge of the percolation cone and related results in first-passage percolation. Probab. Theory Relat. Fields 156(1), 193-227 (2013) · Zbl 1275.60093 · doi:10.1007/s00440-012-0425-4
[20] Auffinger, A., Damron, M., Hanson, J.: 50 Years of First-Passage Percolation. American Mathematical Society, Providence (2017) · Zbl 1452.60002 · doi:10.1090/ulect/068
[21] Badoni, D., Ciria, J., Parisi, G., Ritort, F., Pech, J., Ruiz-Lorenzo, J.: Numerical evidence of a critical line in the \(4d\) Ising spin glass. Europhys. Lett. 21, 495-499 (1993) · doi:10.1209/0295-5075/21/4/019
[22] Ballesteros, H., Cruz, A., Fernández, L., Martin-Mayor, V., Pech, J., Ruiz-Lorenzo, J., Tarancón, A., Téllez, P., Ullod, C., Ungil, C.: Critical behavior of the three-dimensional Ising spin glass. Phys. Rev. B 62, 14237 (2000) · doi:10.1103/PhysRevB.62.14237
[23] Banavar, J.R., Cieplak, M., Maritan, A.: Optimal paths and domain walls in the strong disorder limit. Phys. Rev. Lett. 72, 2320-2323 (1994) · doi:10.1103/PhysRevLett.72.2320
[24] Barsky, D., Aizenman, M.: Percolation critical exponents under the triangle condition. Ann. Probab. 19, 1520-1536 (1991) · Zbl 0747.60093 · doi:10.1214/aop/1176990221
[25] Barsky, D.J., Grimmett, G.R., Newman, C.M.: Percolation in half-spaces: equality of critical densities and continuity of the percolation probability. Probab. Theory Relat. Fields 90(1), 111-148 (1991) · Zbl 0727.60118 · doi:10.1007/BF01321136
[26] Barsky, D.J., Wu, C.C.: Critical exponents for the contact process under the triangle condition. J. Stat. Phys. 91(1), 95-124 (1998) · Zbl 0919.60087 · doi:10.1023/A:1023036020125
[27] Beffara, V., Nolin, P.: On monochromatic arm exponents for 2D critical percolation. Ann. Probab. 39(4), 1286-1304 (2011) · Zbl 1225.82029 · doi:10.1214/10-AOP581
[28] Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[29] Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34(5), 763-774 (1984) · doi:10.1007/BF01009438
[30] Benjamini, I., Schramm, O.: Percolation beyond Open image in new window##img## , many questions and a few answers. Electron. Commun. Probab. 1, 71-82 (1996) · Zbl 0890.60091
[31] Bethe, H.: Statistical theory of superlattices. Proc. Roy. Soc. London A: Math. Phys. Eng. Sci. 150(871), 552-575 (1935) · Zbl 0012.04501 · doi:10.1098/rspa.1935.0122
[32] Billoire, A., Maiorano, A., Marinari, E., Martin-Mayor, V., Yllanes, D.: Cumulative overlap distribution function in realistic spin glasses. Phys. Rev. B 90, 094201 (2014) · doi:10.1103/PhysRevB.90.094201
[33] Binder, K., Young, A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801-976 (1986) · doi:10.1103/RevModPhys.58.801
[34] Bleher, P.M., Sinai, J.G.: Investigation of the critical point in models of the type of dyson’s hierarchical models. Commun. Math. Phys. 33(1), 23-42 (1973) · doi:10.1007/BF01645604
[35] Bokil, H., Bray, A.J., Drossel, B., Moore, M.A.: Comment on ‘General method to determine replica symmetry breaking transitions’. Phys. Rev. Lett. 82, 5174 (1999) · doi:10.1103/PhysRevLett.82.5174
[36] Bokil, H., Drossel, B., Moore, M.A.: The influence of critical behavior on the spin glass phase (2000). Available as cond-mat/0002130 · Zbl 0935.82045
[37] Bollobas, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006) · Zbl 1118.60001 · doi:10.1017/CBO9781139167383
[38] Borgs, C., Chayes, J.T., van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33(5), 1886-1944 (2005) · Zbl 1079.05087 · doi:10.1214/009117905000000260
[39] Borthwick, D., Garibaldi, S.: Did a 1-dimensional magnet detect a 248-dimensional Lie algebra? Notices Amer. Math. Soc. 58, 1055-1066 (2011) · Zbl 1267.82002
[40] Bouchaud, J.P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I(2), 1705-1713 (1992)
[41] Bray, A.J., Moore, M.A.: Critical behavior of the three-dimensional Ising spin glass. Phys. Rev. B 31, 631-633 (1985) · doi:10.1103/PhysRevB.31.631
[42] Bray, A.J., Moore, M.A.: Chaotic nature of the spin-glass phase. Phys. Rev. Lett. 58, 57-60 (1987) · doi:10.1103/PhysRevLett.58.57
[43] Broadbent, S.: Contribution to discussion on symposium on Monte Carlo methods. J. Roy. Statist. Soc. B 16, 68 (1954)
[44] Broadbent, S.R., Hammersley, J.M.: Percolation processes: I. Crystals and mazes. In: Mathematical Proceedings of the Cambridge Philosophical Society, 53(3), pp. 629-641 (1957) · Zbl 0091.13901
[45] Bruijn, N.G.D.: The roots of trigonometric integrals. Duke Math. J. 17, 197-226 (1950) · Zbl 0038.23302 · doi:10.1215/S0012-7094-50-01720-0
[46] Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121(3), 501-505 (1989) · Zbl 0662.60113 · doi:10.1007/BF01217735
[47] Burton, R.M., Keane, M.: Topological and metric properties of infinite clusters in stationary two-dimensional site percolation. Isr. J. Math. 76, 299-316 (1991) · Zbl 0757.60102 · doi:10.1007/BF02773867
[48] Cacciuto, A., Marinari, E., Parisi, G.: A numerical study of ultrametricity in finite-dimensional spin glasses. J. Phys. A 30, L263-L269 (1997) · Zbl 0939.82050 · doi:10.1088/0305-4470/30/9/002
[49] Camia, F., Fontes, L.R.G., Newman, C.M.: The scaling limit geometry of near-critical 2D percolation. J. Stat. Phys. 125, 57-69 (2006) · Zbl 1119.82027 · doi:10.1007/s10955-005-9014-6
[50] Camia, F., Fontes, L.R.G., Newman, C.M.: Two-dimensional scaling limits via marked nonsimple loops. Bull. Braz. Math. Soc. 37(4), 537-559 (2006) · Zbl 1109.60326 · doi:10.1007/s00574-006-0026-x
[51] Camia, F., Garban, C., Newman, C.M.: The Ising magnetization exponent on \(\mathbb{Z}^2\) is \(1/15\). Probab. Theory Rel. Fields 160, 175-187 (2014) · Zbl 1307.82004 · doi:10.1007/s00440-013-0526-8
[52] Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field I. Uniqueness of the critical scaling limits. Ann. Probab. 43, 528-571 (2015) · Zbl 1332.82012 · doi:10.1214/13-AOP881
[53] Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits. Ann. Inst. H. Poincaré Probab. Statist. 52, 146-161 (2016) · Zbl 1338.82009 · doi:10.1214/14-AIHP643
[54] Camia, F., Jiang, J., Newman, C.M.: Exponential decay for the near-critical scaling limit of the planar Ising model. Commun. Pure Appl. Math. (2017, to appear). arXiv:1707.02668
[55] Camia, F., Jiang, J., Newman, C.M.: New FK-Ising coupling applied to near-critical planar models. arXiv:1709.00582 · Zbl 1475.82002
[56] Camia, F., Joosten, M., Meester, R.: Trivial, critical and near-critical scaling limits of two-dimensional percolation. J. Stat. Phys. 137, 57-69 (2009) · Zbl 1179.82075 · doi:10.1007/s10955-009-9841-y
[57] Camia, F., Newman, C.M.: Continuum nonsimple loops and 2D critical percolation. J. Stat. Phys. 116(1), 157-173 (2004) · Zbl 1142.82332 · doi:10.1023/B:JOSS.0000037221.31328.75
[58] Camia, F., Newman, C.M.: The full scaling limit of two-dimensional critical percolation (2005). arXiv:math.PR/0504036 · Zbl 1117.60086
[59] Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1), 1-38 (2006) · Zbl 1117.60086 · doi:10.1007/s00220-006-0086-1
[60] Camia, F., Newman, C.M.: Critical percolation exploration path and \(SLE_6\): a proof of convergence. Probab. Theory Relat. Fields 139(3), 473-519 (2007) · Zbl 1126.82007 · doi:10.1007/s00440-006-0049-7
[61] Camia, F., Newman, C.: SLE6 and CLE6 from critical percolation. In: Pinsky, M., Birnir, B. (eds.) Probability, Geometry and Integrable Systems, Mathematical Sciences Research Institute Publications 55, vol. 55, pp. 103-130. Cambridge University Press, Cambridge (2008) · Zbl 1214.82034
[62] Camia, F., Newman, C.M.: Ising (conformal) fields and cluster area measures. Proc. Natl. Acad. Sci. (USA) 14, 5457-5463 (2009) · Zbl 1202.82017 · doi:10.1073/pnas.0900700106
[63] Caracciolo, S., Parisi, G., Patarnello, S., Sourlas, N.: Low temperature behaviour of \(3-{D}\) spin glasses in a magnetic field. J. Phys. France 51, 1877-1895 (1990) · doi:10.1051/jphys:0199000510170187700
[64] Cator, E., Pimentel, L.P.R.: A shape theorem and semi-infinite geodesics for the Hammersley model with random weights. LEA: Lat. Am. J. Probab. Math. Stat. 8, 163-175 (2011) · Zbl 1276.60109
[65] Chatterjee, S.: Disorder chaos and multiple valleys in spin glasses (2009). arXiv:0907.3381
[66] Chatterjee, S.: The universal relation between scaling exponents in first-passage percolation. Ann. Math. 177(2), 663-697 (2013) · Zbl 1271.60101 · doi:10.4007/annals.2013.177.2.7
[67] Chayes, J., Chayes, L.: An inequality for the infinite cluster density in Bernoulli percolation. Phys. Rev. Lett. 56, 1619-1622 (1986) · doi:10.1103/PhysRevLett.56.1619
[68] Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181, 1087-1138 (2015) · Zbl 1318.82006 · doi:10.4007/annals.2015.181.3.5
[69] Borgs, C., Chayes, J.T., van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs: I. The scaling window under the triangle condition. Random Struct. Algorithms 27(2), 137-184 (2005) · Zbl 1076.05071
[70] Cohen, J.E., Newman, C.M., Briand, F.: A stochastic theory of community food webs: II. Individual webs. Proc. Royal Soc. London B224, 449-461 (1985)
[71] Contucci, P., Giardiná, C., Giberti, C., Parisi, G., Vernia, C.: Ultrametricity in the Edwards-Anderson model. Phys. Rev. Lett. 99, 057206 (2007) · Zbl 1208.82065 · doi:10.1103/PhysRevLett.99.057206
[72] Cox, J.T., Durrett, R.: Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9(4), 583-603 (1981) · Zbl 0462.60012 · doi:10.1214/aop/1176994364
[73] Damron, M., Hanson, J.: Bigeodesics in first-passage percolation. Commun. Math. Phys. 349(2), 753-776 (2017) · Zbl 1361.60089 · doi:10.1007/s00220-016-2743-3
[74] Damron, M., Hochman, M.: Examples of nonpolygonal limit shapes in I.I.D. First-passage percolation and infinite coexistence in spatial growth models. Ann. Appl. Probab. 23(3), 1074-1085 (2013) · Zbl 1314.60154 · doi:10.1214/12-AAP864
[75] Delfino, G.: Integrable field theory and critical phenomena: the Ising model in a magnetic field. J. Phys. A: Math. Gen. 37, R45-R78 (2004) · Zbl 1119.81383 · doi:10.1088/0305-4470/37/14/R01
[76] Derrida, B., Toulouse, G.: Sample to sample fluctuations in the random energy model. J. Phys. (Paris) Lett. 46, L223-L228 (1985) · doi:10.1051/jphyslet:01985004606022300
[77] Doyon, B.: Calculus on manifolds of conformal maps and CFT. J. Phys. A: Math. Theor. 45, 315202 (2012) · Zbl 1258.81076 · doi:10.1088/1751-8113/45/31/315202
[78] Doyon, B.: Conformal loop ensembles and the stress-energy tensor. Lett. Math. Phys. 103, 233-284 (2013) · Zbl 1263.81253 · doi:10.1007/s11005-012-0594-1
[79] Doyon, B.: Random loops and conformal field theory. J. Stat. Mech. Ther. Expt. 46, 46039207 (2014)
[80] Drossel, B., Bokil, H., Moore, M.A., Bray, A.J.: The link overlap and finite size effects for the \(3{D}\) Ising spin glass. Eur. Phys. J. B 13, 369-375 (2000) · Zbl 0935.82045 · doi:10.1007/s100510050043
[81] Dubédat, J.: Excursion decompositions for SLE and Watts’ crossing formula. Probab. Theory Relat. Fields 134(3), 453-488 (2006) · Zbl 1112.60032 · doi:10.1007/s00440-005-0446-3
[82] Dubédat, J.: Exact bosonization of the Ising model (2011). arXiv:1112.4399
[83] Dunlop, F.: Zeros of the partition function and Gaussian inequalities for the plane rotator model. J. Stat. Phys. 21, 561-572 (1979) · doi:10.1007/BF01011168
[84] Dunlop, F., Newman, C.M.: Multicomponent field theories and classical rotators. Commun. Math. Phys. 44, 223-235 (1975) · doi:10.1007/BF01609827
[85] Dyson, F.: General theory of spin-wave interactions. Phys. Rev. 102, 1217-1229 (1956) · Zbl 0072.23601 · doi:10.1103/PhysRev.102.1217
[86] Dyson, F.J.: Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12(2), 91-107 (1969) · Zbl 1306.47082 · doi:10.1007/BF01645907
[87] Edwards, R.G., Sokal, A.D.: Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D 38, 2009-2012 (1988) · doi:10.1103/PhysRevD.38.2009
[88] Edwards, S., Anderson, P.W.: Theory of spin glasses. J. Phys. F 5, 965-974 (1975) · doi:10.1088/0305-4608/5/5/017
[89] Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 44(2), 117-139 (1978) · Zbl 0364.60120 · doi:10.1007/BF00533049
[90] Ellis, R.S., Newman, C.M.: The statistics of Curie-Weiss models. J. Stat. Phys. 19(2), 149-161 (1978) · doi:10.1007/BF01012508
[91] Ellis, R.S., Newman, C.M., Rosen, J.S.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 51(2), 153-169 (1980) · Zbl 0404.60096 · doi:10.1007/BF00536186
[92] Fernandez, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992) · Zbl 0761.60061 · doi:10.1007/978-3-662-02866-7
[93] Ferrari, P.A., Pimentel, L.P.R.: Competition interfaces and second class particles. Ann. Probab. 33(4), 1235-1254 (2005) · Zbl 1078.60083 · doi:10.1214/009117905000000080
[94] Fisher, D.S., Huse, D.A.: Ordered phase of short-range Ising spin-glasses. Phys. Rev. Lett. 56, 1601-1604 (1986) · doi:10.1103/PhysRevLett.56.1601
[95] Fisher, D.S., Huse, D.A.: Absence of many states in realistic spin glasses. J. Phys. A 20, L1005-L1010 (1987) · doi:10.1088/0305-4470/20/15/013
[96] Fisher, D.S., Huse, D.A.: Pure States in Spin Glasses. J. Phys. A 20, L997-L1004 (1987) · doi:10.1088/0305-4470/20/15/013
[97] Fisher, D.S., Huse, D.A.: Equilibrium behavior of the spin-glass ordered phase. Phys. Rev. B 38, 386-411 (1988) · doi:10.1103/PhysRevB.38.386
[98] Fisher, D.S., Huse, D.A.: Nonequilibrium dynamics of spin glasses. Phys. Rev. B 38, 373-385 (1988) · doi:10.1103/PhysRevB.38.373
[99] Fitzner, R., van den Hofstad, R.: Nearest-neighbor percolation function is continuous for \(d > 10\): extended version (2015). arXiv:1506.07977
[100] Fontes, L.R.G., Isopi, M., Newman, C.M.: Chaotic time dependence in a disordered spin system. Prob. Theory Rel. Fields 115, 417-433 (1999) · Zbl 0954.60094 · doi:10.1007/s004400050244
[101] Fontes, L.R.G., Isopi, M., Newman, C.M.: Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30, 579-604 (2002) · Zbl 1015.60099 · doi:10.1214/aop/1023481003
[102] Fontes, L.R.G., Isopi, M., Newman, C.M., Ravishankar, K.: The Brownian web: characterization and convergence. Ann. Probab. 32(4), 2857-2883 (2004) · Zbl 1105.60075 · doi:10.1214/009117904000000568
[103] Fontes, L.R.G., Isopi, M., Newman, C.M., Stein, D.L.: Aging in \(1{D}\) discrete spin models and equivalent systems. Phys. Rev. Lett. 87, 1102011 (2001) · doi:10.1103/PhysRevLett.87.110201
[104] Fontes, L.R., Isopi, M., Newman, C.M., Ravishankar, K.: The Brownian web. Proc. Natl. Acad. Sci. 99, 15888-15893 (2002) · Zbl 1069.60068 · doi:10.1073/pnas.252619099
[105] Forgacs, G., Lipowsky, R., Nieuwenhuizen, T.M.: The behavior of interfaces in ordered and disordered systems. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 14, pp. 135-363. Academic Press, London (1991)
[106] Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536-564 (1972) · doi:10.1016/0031-8914(72)90045-6
[107] Francesco, P., Mathieu, P., Senechal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics, corrected edn. Springer, New York (1997) · Zbl 0869.53052
[108] Fröhlich, J., Rodriguez, P.F.: Some applications of the Lee-Yang theorem. J. Math. Phys. 53, 095218 (2012) · Zbl 1311.82010 · doi:10.1063/1.4749391
[109] Fröhlich, J., Spencer, T.: On the statistical mechanics of classical Coulomb and dipole gases. J. Stat. Phys. 24, 617-701 (1981) · doi:10.1007/BF01011379
[110] Gandolfi, A., Keane, M., Newman, C.M.: Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Relat. Fields 92, 511-527 (1992) · Zbl 0767.60098 · doi:10.1007/BF01274266
[111] Garban, C., Pete, G., Schramm, O.: Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26, 939-1024 (2013) · Zbl 1276.60111 · doi:10.1090/S0894-0347-2013-00772-9
[112] Garet, O., Marchand, R.: Moderate deviations for the chemical distance in Bernoulli percolation. ALEA: Lat. Am. J. Probab. Math. Stat. 7, 171-191 (2010) · Zbl 1276.60112
[113] Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987) · Zbl 0461.46051 · doi:10.1007/978-1-4612-4728-9
[114] Grimmett, G.: The random-cluster model. Grundlehren der mathematischen Wissenschaften 333, (2016) · Zbl 1045.60105
[115] Grimmett, G.R.: Percolation. Springer, Berlin (1999) · Zbl 0926.60004 · doi:10.1007/978-3-662-03981-6
[116] Guerra, F., Rosen, L., Simon, B.: Correlation inequalities and the mass gap in \(p(\phi )_2\). Commun. Math. Phys. 41, 19-32 (1975) · doi:10.1007/BF01608544
[117] Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13(7), 253-261 (1945) · doi:10.1063/1.1724033
[118] Gunnarson, K., Svedlindh, P., Nordblad, P., Lundgren, L., Aruga, H., Ito, A.: Static scaling in a short-range Ising spin glass. Phys. Rev. B 43, 8199 (1991) · doi:10.1103/PhysRevB.43.8199
[119] Hammersley, J.M.: Percolation processes: lower bounds for the critical probability. Ann. Math. Stat. 28(3), 790-795 (1957) · Zbl 0091.13903 · doi:10.1214/aoms/1177706894
[120] Hammersley, J.M.: Bornes supérieures de la probabilité critique dans un processus de filtration. In: Le Calcul des Probabilités et ses Applications. Paris, 15-20 Juillet 1958, p. 790-795. Centre National de la Recherche Scientifique (1959)
[121] Hammersley, J.M., Welsh, D.J.A.: First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theory, pp. 61-110. Springer, Heidelberg (1965) · Zbl 0143.40402
[122] Hara, T., Slade, G.: The triangle condition for percolation. Bull. Am. Math. Soc. (N.S.) 21, 269-273 (1989) · Zbl 0698.60099 · doi:10.1090/S0273-0979-1989-15827-8
[123] Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128(2), 333-391 (1990) · Zbl 0698.60100 · doi:10.1007/BF02108785
[124] Hasenbusch, M., Pelissetto, A., Vicari, E.: Critical behavior of three-dimensional Ising spin glass models. Phys. Rev. B 78, 214205 (2008) · Zbl 1456.82915 · doi:10.1103/PhysRevB.78.214205
[125] Hed, G., Young, A.P., Domany, E.: Lack of ultrametricity in the low-temperature phase of three-dimensional Ising spin glasses. Phys. Rev. Lett. 92, 157201 (2004) · doi:10.1103/PhysRevLett.92.157201
[126] Hoffman, C.: Geodesics in first passage percolation. Ann. Appl. Probab. 18(5), 1944-1969 (2008) · Zbl 1153.60055 · doi:10.1214/07-AAP510
[127] Hongler, C.: Conformal invariance of Ising model correlations. Ph.D. dissertation, Univ. Geneva (2010) · Zbl 1304.82013
[128] Hongler, C., Smirnov, S.: The energy density in the planar Ising model. Acta Math. 211, 191-225 (2013) · Zbl 1287.82007 · doi:10.1007/s11511-013-0102-1
[129] Howard, C.D., Newman, C.M.: Euclidean models of first-passage percolation. Probab. Theory Relat. Fields 108(2), 153-170 (1997) · Zbl 0883.60091 · doi:10.1007/s004400050105
[130] Howard, C.D., Newman, C.M.: From Greedy Lattice Animals to Euclidean First-Passage Percolation, pp. 107-119. Birkhäuser Boston, Boston (1999) · Zbl 0941.60054
[131] Howard, C.D., Newman, C.M.: Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29(2), 577-623 (2001) · Zbl 1062.60099
[132] Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253-258 (1925) · Zbl 1439.82056 · doi:10.1007/BF02980577
[133] Jackson, T.S., Read, N.: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model. Phys. Rev. E 81, 021130 (2010) · doi:10.1103/PhysRevE.81.021130
[134] Baity-Jesi, M., et al.: (Janus Collaboration): Critical parameters of the three-dimensional Ising spin glass. Phys. Rev. B 88, 224416 (2013) · doi:10.1103/PhysRevB.88.224416
[135] Jona-Lasinio, G.: The renormalization group: a probabilistic view. Il Nuovo Cimento B (1971-1996) 26(1), 99-119 (1975) · doi:10.1007/BF02755540
[136] Jona-Lasinio, G.: Probabilistic Approach to Critical Behavior, pp. 419-446. Springer, Boston (1977)
[137] Jona-Lasinio, G.: Renormalization group and probability theory. Phys. Rep. 352(4), 439-458 (2001). Renormalization group theory in the new millennium. III · Zbl 0979.82026 · doi:10.1016/S0370-1573(01)00042-4
[138] Kasteleyn, P.W., Fortuin, C.M.: Phase transitions in lattice systems with random local properties. J. Phys. Soc. Jpn. [Suppl.] 26, 11-14 (1969)
[139] Katzgraber, H.G., Krzakala, F.: Temperature and disorder chaos in three-dimensional Ising spin glasses. Phys. Rev. Lett. 98, 017201 (2007) · doi:10.1103/PhysRevLett.98.017201
[140] Katzgraber, H.G., Palassini, M., Young, A.P.: Monte Carlo simulations of spin glasses at low temperatures. Phys. Rev. B 63, 184422 (2001) · doi:10.1103/PhysRevB.63.184422
[141] Katzgraber, H.G., Young, A.P.: Probing the Almeida-Thouless line away from the mean-field model. Phys. Rev. B 72, 184416 (2005) · doi:10.1103/PhysRevB.72.184416
[142] Kemppainen, A., Werner, W.: The nested simple conformal loop ensembles in the Riemann sphere. Probab. Theory Relat. Fields 165, 835-866 (2016) · Zbl 1352.60117 · doi:10.1007/s00440-015-0647-3
[143] Kesten, H.: The critical probability of bond percolation on the square lattice equals \(1/2\). Commun. Math. Phys. 74(1), 41-59 (1980) · Zbl 0441.60010 · doi:10.1007/BF01197577
[144] Kesten, H.: Percolation Theory for Mathematicians. Birkhauser, Boston (1982) · Zbl 0522.60097 · doi:10.1007/978-1-4899-2730-9
[145] Kesten, H.: Aspects of First-Passage Percolation, pp. 125-264. Springer, Berlin (1986) · Zbl 0602.60098
[146] Kesten, H.: On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3, 296-338 (1993) · Zbl 0783.60103 · doi:10.1214/aoap/1177005426
[147] Ki, H., Kim, Y.O., Lee, J.: On the de Bruijn-Newman constant. Adv. Math. 222, 281-306 (2009) · Zbl 1175.30023 · doi:10.1016/j.aim.2009.04.003
[148] Kipnis, C., Newman, C.M.: The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45, 972-982 (1985) · Zbl 0592.60063 · doi:10.1137/0145059
[149] Knauf, A.: Number theory, dynamical systems and statistical mechanics. Rev. Math. Phys. 11, 1027-1060 (1999) · Zbl 0956.11019 · doi:10.1142/S0129055X99000325
[150] Krug, J., Spohn, H.: Kinetic Roughening of Growing Interfaces, pp. 479-582. Cambridge University Press, Cambridge (1991)
[151] Krzakala, F., Martin, O.C.: Spin and link overlaps in three-dimensional spin glasses. Phys. Rev. Lett. 85, 3013-3016 (2000) · doi:10.1103/PhysRevLett.85.3013
[152] Külske, C.: Limiting behavior in random Gibbs measures: metastates in some disordered mean field models. In: Bovier, A., Picco, P. (eds.) Mathematics of Spin Glasses and Neural Networks, pp. 151-160. Birkhauser, Boston (1998) · Zbl 0896.60081 · doi:10.1007/978-1-4612-4102-7_4
[153] Külske, C.: Metastates in disordered mean-field models II: The superstates. J. Stat. Phys. 91, 155-176 (1998) · Zbl 0942.60100 · doi:10.1023/A:1023040121034
[154] Landau, L.D.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19-32 (1937). [Ukr. J. Phys.53,25(2008)]
[155] Lawler, G.F., Schramm, O., Werner, W.: The dimension of the planar Brownian frontier is \(4/3\). Math. Res. Lett. 8, 401-411 (2001) · Zbl 1114.60316 · doi:10.4310/MRL.2001.v8.n4.a1
[156] Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents, I: Half-plane exponents. Acta Math. 187(2), 237-273 (2001) · Zbl 1005.60097 · doi:10.1007/BF02392618
[157] Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2d percolation. Electron. J. Probab. 7, 13 pp. (2002) · Zbl 1015.60091
[158] Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939-995 (2004) · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[159] Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410-419 (1952) · Zbl 0048.43401 · doi:10.1103/PhysRev.87.410
[160] Lenz, W.: Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern. Physik Zeitschr. 21, 613-615 (1920)
[161] Licea, C., Newman, C., Piza, M.: Superdiffusivity in first-passage percolation. Probab. Theory Relat. Fields 106(4), 559-591 (1996) · Zbl 0870.60096 · doi:10.1007/s004400050075
[162] Licea, C., Newman, C.M.: Geodesics in two-dimensional first-passage percolation. Ann. Probab. 24(1), 399-410 (1996) · Zbl 0863.60097 · doi:10.1214/aop/1042644722
[163] Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80, 153-179 (1981) · doi:10.1007/BF01213009
[164] Lyons, R.: Phase transitions on nonamenable graphs. J. Math. Phys. 41(3), 1099-1126 (2000) · Zbl 1034.82014 · doi:10.1063/1.533179
[165] Machta, J., Newman, C.M., Stein, D.L.: The percolation signature of the spin glass transition. J. Stat. Phys. 130, 113-128 (2008) · Zbl 1134.82047 · doi:10.1007/s10955-007-9446-2
[166] Machta, J., Newman, C.M., Stein, D.L.: Percolation in the Sherrington-Kirkpatrick spin glass. In: Sidoravicious, V., Vares, M.E. (eds.) Progress in Probability, vol. 60: In and Out of Equilibrium II, pp. 527-542. Birkhauser, Boston (2009) · Zbl 1173.82332
[167] Machta, J., Newman, C.M., Stein, D.L.: A percolation-theoretic approach to spin glass phase transitions. In: de Monvel, A.B., Bovier, A. (eds.) Proceedings of the 2007 Paris Spin Glass Summer School, Progress in Probability Series, vol. 62, pp. 205-223. Birkhauser, Boston (2009) · Zbl 1194.82044
[168] Marinari, E., Parisi, G.: Effects of changing the boundary conditions on the ground state of Ising spin glasses. Phys. Rev. B 62, 11677-11685 (2000) · doi:10.1103/PhysRevB.62.11677
[169] Marinari, E., Parisi, G.: Effects of a bulk perturbation on the ground state of \(3{D}\) Ising spin glasses. Phys. Rev. Lett. 86, 3887-3890 (2001) · doi:10.1103/PhysRevLett.86.3887
[170] Marinari, E., Parisi, G., Ricci-Tersenghi, F., Ruiz-Lorenzo, J.J., Zuliani, F.: Replica symmetry breaking in spin glasses: theoretical foundations and numerical evidences. J. Stat. Phys. 98, 973-1047 (2000) · Zbl 1015.82037 · doi:10.1023/A:1018607809852
[171] Marinari, E., Parisi, G., Ritort, F.: On the \(3{D}\) Ising spin glass. J. Phys. A 27, 2687-2708 (1994) · doi:10.1088/0305-4470/27/8/008
[172] Marinari, E., Parisi, G., Ruiz-Lorenzo, J.: Numerical simulations of spin glass systems. In: Young, A.P. (ed.) Spin Glasses and Random Fields, pp. 59-98. World Scientific, Singapore (1997) · doi:10.1142/9789812819437_0003
[173] Marinari, E., Parisi, G., Ruiz-Lorenzo, J.J., Ritort, F.: Numerical evidence for spontaneously broken replica symmetry in \(3{D}\) spin glasses. Phys. Rev. Lett. 76, 843-846 (1996) · doi:10.1103/PhysRevLett.76.843
[174] McCoy, B., Mallard, J.M.: The importance of the Ising model. Program. Theor. Phys. 127, 791-817 (2012) · Zbl 1251.82021 · doi:10.1143/PTP.127.791
[175] McMillan, W.L.: Scaling theory of Ising spin glasses. J. Phys. C 17, 3179-3187 (1984) · doi:10.1088/0022-3719/17/18/010
[176] Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133-1136 (1966) · doi:10.1103/PhysRevLett.17.1133
[177] Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.: Nature of spin-glass phase. Phys. Rev. Lett. 52, 1156-1159 (1984) · Zbl 0968.82528 · doi:10.1103/PhysRevLett.52.1156
[178] Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.: Replica symmetry breaking and the nature of the spin-glass phase. J. Phys. (Paris) 45, 843-854 (1984) · Zbl 0968.82528 · doi:10.1051/jphys:01984004505084300
[179] Mézard, M., Parisi, G., Virasoro, M.A.: Random free energies in spin glasses. J. Phys. (Paris) Lett. 46, L217-L222 (1985) · doi:10.1051/jphyslet:01985004606021700
[180] Mézard, M., Parisi, G., Virasoro, M.A. (eds.): Spin Glass Theory and Beyond. World Scientific, Singapore (1987) · Zbl 0992.82500
[181] Middleton, A.A.: Numerical investigation of the thermodynamic limit for ground states in models with quenched disorder. Phys. Rev. Lett. 83, 1672-1675 (1999) · doi:10.1103/PhysRevLett.83.1672
[182] Middleton, A.A.: Energetics and geometry of excitations in random systems. Phys. Rev. B 63, 060202 (2000) · doi:10.1103/PhysRevB.63.060202
[183] Middleton, A.A.: Extracting thermodynamic behavior of spin glasses from the overlap function. Phys. Rev. B 87, 220201 (2013) · doi:10.1103/PhysRevB.87.220201
[184] Miller, J., Sheffield, S., Werner, W.: CLE precolations. Forum Math. 5, 102 pages (2017) · Zbl 1390.60356
[185] Miller, J., Sun, N., Wilson, D.B.: The Hausdorff dimension of the CLE gasket. Ann. Probab. 42, 1644-1665 (2014) · Zbl 1305.60078 · doi:10.1214/12-AOP820
[186] Miller, J., Watson, S.S., Wilson, D.B.: The conformal loop ensemble nesting field. Probab. Theory Relat. Fields 163, 769-801 (2015) · Zbl 1334.60038 · doi:10.1007/s00440-014-0604-6
[187] Miller, J., Watson, S.S., Wilson, D.B.: Extreme nesting in the conformal loop ensemble. Ann. Probab. 44, 1013-1052 (2016) · Zbl 1347.60061 · doi:10.1214/14-AOP995
[188] Miller, J., Werner, W.: Connection probabilities for conformal loop ensembles. Commun. Math. Phys. 362, 415-453 (2018) · Zbl 1400.60128 · doi:10.1007/s00220-018-3207-8
[189] Moore, M.A., Bokil, H., Drossel, B.: Evidence for the droplet picture of spin glasses. Phys. Rev. Lett. 81, 4252-4255 (1998) · doi:10.1103/PhysRevLett.81.4252
[190] Nanda, S., Newman, C.M., Stein, D.L.: Dynamics of Ising spin systems at zero temperature. In: R. Minlos, S. Shlosman, Y. Suhov (eds.) On Dobrushin’s Way (from Probability Theory to Statistical Physics), pp. 183-194. Amer. Math. Soc. Transl. (2) 198 (2000) · Zbl 0968.60097
[191] Newman, C.M.: Ultralocal quantum field theory in terms of currents. Commun. Math. Phys. 26(3), 169-204 (1972) · doi:10.1007/BF01645089
[192] Newman, C.M.: The construction of stationary two-dimensional Markoff fields with an application to quantum field theory. J. Funct. Anal. 14(1), 44-61 (1973) · Zbl 0268.60045 · doi:10.1016/0022-1236(73)90029-3
[193] Newman, C.M.: Zeros of the partition function for generalized Ising systems. Commun. Pure Appl. Math. 27, 143-159 (1974) · Zbl 1508.82012 · doi:10.1002/cpa.3160270203
[194] Newman, C.M.: Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys. 41, 1-9 (1975) · doi:10.1007/BF01608542
[195] Newman, C.M.: Fourier transforms with only real zeros. Proc. Am. Math. Soc. 61, 245-251 (1976) · Zbl 0342.42007 · doi:10.1090/S0002-9939-1976-0434982-5
[196] Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74(2), 119-128 (1980) · Zbl 0429.60096 · doi:10.1007/BF01197754
[197] Newman, C.M.: A general central limit theorem for FKG systems. Commun. Math. Phys. 91(1), 75-80 (1983) · Zbl 0528.60024 · doi:10.1007/BF01206051
[198] Newman, C.M.: Some critical exponent inequalities for percolation. J. Stat. Phys. 45(3), 359-368 (1986) · doi:10.1007/BF01021076
[199] Newman, C.M.: Another critical exponent inequality for percolation: \( \beta \ge 2/\delta \). J. Stat. Phys. 47(5), 695-699 (1987) · doi:10.1007/BF01206153
[200] Newman, C.M.: Inequalities for \(\gamma\) and related critical exponents in short and long range percolation. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems, pp. 229-244. Springer, New York (1987) · Zbl 0621.60113
[201] Newman, C.M.: Disordered Ising systems and random cluster representations. In: Grimmett, G. (ed.) Probability and Phase Transition, pp. 247-260. Kluwer, Dordrecht (1994) · Zbl 0827.60087 · doi:10.1007/978-94-015-8326-8_15
[202] Newman, C.M.: Topics in Disordered Systems. Birkhauser, Basel (1997) · Zbl 0897.60093 · doi:10.1007/978-3-0348-8912-4
[203] Newman, C.M., Cohen, J.E.: A stochastic theory of community food webs: I. Models and aggregated data. Proc. Royal. Soc. London B224, 421-448 (1985)
[204] Newman, C.M., Cohen, J.E., Kipnis, C.: Neo-Darwinian evolution implies punctuated equilibria. Nature 315, 400-401 (1985) · doi:10.1038/315400a0
[205] Newman, C.M., Grimmett, G.R.: Percolation in \(\infty +1\) Dimensions, pp. 167-190. Claredon Press, Oxford (1990) · Zbl 0721.60121
[206] Newman, C.M., Piza, M.S.T.: Divergence of shape fluctuations in two dimensions. Ann. Probab. 23(3), 977-1005 (1995) · Zbl 0835.60087 · doi:10.1214/aop/1176988171
[207] Newman, C.M., Schulman, L.S.: Infinite clusters in percolation models. J. Stat. Phys. 26(3), 613-628 (1981) · Zbl 0509.60095 · doi:10.1007/BF01011437
[208] Newman, C.M., Schulman, L.S.: One dimensional \(1/|j - i|^s\) percolation models: the existence of a transition for \(s \le 2\). Commun. Math. Phys. 104(4), 547-571 (1986) · Zbl 0604.60097 · doi:10.1007/BF01211064
[209] Newman, C.M., Stein, D.L.: Unpublished
[210] Newman, C.M., Stein, D.L.: Multiple states and thermodynamic limits in short-ranged Ising spin glass models. Phys. Rev. B 46, 973-982 (1992) · doi:10.1103/PhysRevB.46.973
[211] Newman, C.M., Stein, D.L.: Spin-glass model with dimension-dependent ground state multiplicity. Phys. Rev. Lett. 72, 2286-2289 (1994) · doi:10.1103/PhysRevLett.72.2286
[212] Newman, C.M., Stein, D.L.: Ground state structure in a highly disordered spin glass model. J. Stat. Phys. 82, 1113-1132 (1996) · Zbl 1042.82568 · doi:10.1007/BF02179805
[213] Newman, C.M., Stein, D.L.: Spatial inhomogeneity and thermodynamic chaos. Phys. Rev. Lett. 76, 4821-4824 (1996) · doi:10.1103/PhysRevLett.76.4821
[214] Newman, C.M., Stein, D.L.: Metastate approach to thermodynamic chaos. Phys. Rev. E 55, 5194-5211 (1997) · doi:10.1103/PhysRevE.55.5194
[215] Newman, C.M., Stein, D.L.: Simplicity of state and overlap structure in finite-volume realistic spin glasses. Phys. Rev. E 57, 1356-1366 (1998) · doi:10.1103/PhysRevE.57.1356
[216] Newman, C.M., Stein, D.L.: Thermodynamic chaos and the structure of short-range spin glasses. In: Bovier, A., Picco, P. (eds.) Mathematics of Spin Glasses and Neural Networks, pp. 243-287. Birkhauser, Boston (1998) · Zbl 0896.60078 · doi:10.1007/978-1-4612-4102-7_7
[217] Newman, C.M., Stein, D.L.: Blocking and persistence in the zero-temperature dynamics of homogeneous and disordered Ising models. Phys. Rev. Lett. 82, 3944-3947 (1999) · doi:10.1103/PhysRevLett.82.3944
[218] Newman, C.M., Stein, D.L.: Equilibrium pure states and nonequilibrium chaos. J. Stat. Phys. 94, 709-722 (1999) · Zbl 0958.82046
[219] Newman, C.M., Stein, D.L.: Nature of ground state incongruence in two-dimensional spin glasses. Phys. Rev. Lett. 84, 3966-3969 (2000) · doi:10.1103/PhysRevLett.84.3966
[220] Newman, C.M., Stein, D.L.: Are there incongruent ground states in \(2{D}\) Edwards-Anderson spin glasses? Commun. Math. Phys. 224, 205-218 (2001) · Zbl 1051.82013 · doi:10.1007/PL00005586
[221] Newman, C.M., Stein, D.L.: Interfaces and the question of regional congruence in spin glasses. Phys. Rev. Lett. 87, 077201 (2001) · doi:10.1103/PhysRevLett.87.077201
[222] Newman, C.M., Stein, D.L.: Nonrealistic behavior of mean field spin glasses. Phys. Rev. Lett. 91, 197205 (2003) · doi:10.1103/PhysRevLett.91.197205
[223] Newman, C.M., Stein, D.L.: Topical review: ordering and broken symmetry in short-ranged spin glasses. J. Phys. Condens. Matter 15, R1319-R1364 (2003) · doi:10.1088/0953-8984/15/32/202
[224] Newman, C.M., Stein, D.L.: Short-range spin glasses: results and speculations. In: Bolthausen, E., Bovier, A. (eds.) Spin Glass Theory, pp. 159-175. Springer, Berlin (2006) · Zbl 1116.82029
[225] Newman, C.M., Wu, W.: Gaussian fluctuations for the classical XY model. Ann. Inst. H. Poincare (B) 54, 1759-1777 (2018) · Zbl 1417.60081 · doi:10.1214/17-AIHP854
[226] Newman, C.M., Wu, W.: Lee-Yang property and Gaussian multiplicative chaos. Commun. Math. Phys. 369, 153-170 (2019) · Zbl 1417.82013 · doi:10.1007/s00220-019-03453-0
[227] Newman, C.M., Wu, W.: Constants of deBruijn-Newman type in analytic number theory and statistical physics. Bull. Am. Math. Soc., in press. Published online April 19, 2019. https://doi.org/10.1090/bull/1668 · Zbl 1469.11312 · doi:10.1090/bull/1668
[228] Nguyen, B.G.: Gap exponents for percolation processes with triangle condition. J. Stat. Phys. 49(1), 235-243 (1987) · Zbl 0962.82521 · doi:10.1007/BF01009960
[229] Nguyen, B.G., Yang, W.S.: Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21(4), 1809-1844 (1993) · Zbl 0806.60097 · doi:10.1214/aop/1176989001
[230] Onsager, L.: Crystal statisics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117-149 (1944) · Zbl 0060.46001 · doi:10.1103/PhysRev.65.117
[231] Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83-112 (1973) · Zbl 0274.46047 · doi:10.1007/BF01645738
[232] Palassini, M., Caracciolo, S.: Universal finite-size scaling functions in the \(3d\) Ising spin glass. Phys. Rev. Lett. 82, 5128-5131 (1999) · doi:10.1103/PhysRevLett.82.5128
[233] Palassini, M., Young, A.P.: Evidence for a trivial ground-state structure in the two-dimensional Ising spin glass. Phys. Rev. B 60, R9919-R9922 (1999) · doi:10.1103/PhysRevB.60.R9919
[234] Palassini, M., Young, A.P.: Triviality of the ground state structure in Ising spin glasses. Phys. Rev. Lett. 83, 5126-5129 (1999) · doi:10.1103/PhysRevLett.83.5126
[235] Palassini, M., Young, A.P.: Nature of the spin glass state. Phys. Rev. Lett. 85, 3017-3020 (2000) · doi:10.1103/PhysRevLett.85.3017
[236] Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754-1756 (1979) · doi:10.1103/PhysRevLett.43.1754
[237] Parisi, G.: Order parameter for spin-glasses. Phys. Rev. Lett. 50, 1946-1948 (1983) · doi:10.1103/PhysRevLett.50.1946
[238] Peierls, R.: On Ising’s model of ferromagnetism. Proc. Cambridge Phil. Soc. 32, 477-481 (1936) · Zbl 0014.33604 · doi:10.1017/S0305004100019174
[239] Penrose, O., Lebowitz, J.L.: On the exponential decay of correlation functions. Commun. Math. Phys. 39, 165-184 (1974) · doi:10.1007/BF01614239
[240] Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett. 12, 381-383 (1970). [Pisma Zh. Eksp. Teor. Fiz. 12538(1970)]
[241] Polymath, D.H.J.: Effective approximation of heat flow evolution of the Riemann \(\zeta\) function, and a new upper bound for the deBruijn-Newman constant (2019). arXiv:1904.12438 · Zbl 1423.30022
[242] R. Basu, S.S., Sly, A.: Coalescence of geodesics in exactly solvable models of last passage percolation (2017). arXiv:1704.05219 · Zbl 1480.60284
[243] Rammal, R., Toulouse, G., Virasoro, M.A.: Ultrametricity for physicists. Rev. Mod. Phys. 58, 765-788 (1986) · doi:10.1103/RevModPhys.58.765
[244] Read, N.: Short-range Ising spin glasses: the metastate interpretation of replica symmetry breaking. Phys. Rev. E 90, 032142 (2014) · doi:10.1103/PhysRevE.90.032142
[245] Reger, J.D., Bhatt, R.N., Young, A.P.: Monte Carlo study of the order-parameter distribution in the four-dimensional Ising spin glass. Phys. Rev. Lett. 64, 1859-1862 (1990) · doi:10.1103/PhysRevLett.64.1859
[246] Richardson, D.: Random growth in a tessellation. Math. Proc. Cambridge Philos. Soc. 74(3), 515-528 (1973) · Zbl 0295.62094 · doi:10.1017/S0305004100077288
[247] Rodgers, B., Tao, T.: The De Bruijn-Newman constant is non-negative. arXiv:1801.05914 · Zbl 1454.11158
[248] Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161(2), 883-924 (2005) · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[249] Ruelle, D.: A mathematical reformulation of derrida’s REM and GREM. Commun. Math. Phys. 108, 225-239 (1987) · Zbl 0617.60100 · doi:10.1007/BF01210613
[250] Rushbrooke, G.S.: On the thermodynamics of the critical region for the Ising problem. J. Chem. Phys. 39(3), 842-843 (1963) · doi:10.1063/1.1734338
[251] Saouter, Y., Gourdon, X., Demichel, P.: An improved lower bound for the de Bruijn-Newman constant. Math. Comput. 80, 2281-2287 (2011) · Zbl 1267.11094 · doi:10.1090/S0025-5718-2011-02472-5
[252] Schertzer, E., Sun, R., Swart, J.: The Brownian Web, The Brownian Net, and Their Universality, pp. 270-368. Cambridge University Press, Cambridge (2017)
[253] Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118(1), 221-288 (2000) · Zbl 0968.60093 · doi:10.1007/BF02803524
[254] Schramm, O.: A percolation formula. Electron. Commun. Probab. 6(12), 115-120 (2001) · Zbl 1008.60100 · doi:10.1214/ECP.v6-1041
[255] Schramm, O., Sheffield, S., Wilson, D.: Conformal radii for conformal loop ensembles. Commun. Math. Phys. 288, 43-53 (2009) · Zbl 1187.82044 · doi:10.1007/s00220-009-0731-6
[256] Sheffield, S.: Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79-129 (2009) · Zbl 1170.60008 · doi:10.1215/00127094-2009-007
[257] Sheffield, S., Werner, W.: Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. Math. 176(3), 1827-1917 (2012) · Zbl 1271.60090 · doi:10.4007/annals.2012.176.3.8
[258] Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792-1796 (1975) · doi:10.1103/PhysRevLett.35.1792
[259] Simon, B., Griffiths, R.B.: The \((\phi^4)_2\) field theory as a classical Ising model. Commun. Math. Phys. 33(2), 145-164 (1973) · doi:10.1007/BF01645626
[260] Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 333(3), 239-244 (2001) · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[261] Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435-1467 (2010) · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441
[262] Smirnov, S., Werner, W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. 8, 729-744 (2001) · Zbl 1009.60087 · doi:10.4310/MRL.2001.v8.n6.a4
[263] Stauffer, D.: Scaling properties of percolation clusters. In: Castellani, C., Di Castro, C., Peliti, L. (eds.) Disordered Systems and Localization, pp. 9-25. Springer, Heidelberg (1981) · doi:10.1007/BFb0012540
[264] Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor & Francis, London (1994). Revised Second Edition · Zbl 0862.60092
[265] Stein, D.L.: Frustration and fluctuations in systems with quenched disorder. In: Chandra, P., Coleman, P., Kotliar, G., Ong, P., Stein, D., Yu, C. (eds.) PWA90: A Lifetime of Emergence, pp. 169-186. World Scientific, Singapore (2016) · doi:10.1142/9789814733632_0016
[266] Stein, D.L., Newman, C.M.: Broken ergodicity and the geometry of rugged landscapes. Phys. Rev. E 51, 5228-5238 (1995) · doi:10.1103/PhysRevE.51.5228
[267] Stein, D.L., Newman, C.M.: Spin Glasses and Complexity. Princeton University Press, Princeton (2013) · Zbl 1277.82003 · doi:10.1515/9781400845637
[268] Sun, R., Swart, J.M.: The Brownian net. Ann. Probab. 36(3), 1153-1208 (2008) · Zbl 1143.82020 · doi:10.1214/07-AOP357
[269] Suzuki, M., Fisher, M.E.: Zeros of the partition function for the Heisenberg, ferroelectric, and general Ising models. J. Math. Phys. 12, 235-246 (1971) · doi:10.1063/1.1665583
[270] Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86-88 (1987) · doi:10.1103/PhysRevLett.58.86
[271] Thouless, D.J.: Long-range order in one-dimensional Ising systems. Phys. Rev. 187, 732-733 (1969) · doi:10.1103/PhysRev.187.732
[272] Tóth, B., Werner, W.: The true self-repelling motion. Probab. Theory Relat. Fields 111(3), 375-452 (1998) · Zbl 0912.60056 · doi:10.1007/s004400050172
[273] Villain, J.: Theory of one-and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. Phys. 36, 581-590 (1975) · doi:10.1051/jphys:01975003606058100
[274] Wang, W., Machta, J., Katzgraber, H.G.: Evidence against a mean field description of short-range spin glasses revealed through thermal boundary conditions. Phys. Rev. B 90, 184412 (2014) · doi:10.1103/PhysRevB.90.184412
[275] Werner, W., Wu, H.: From CLE \((\kappa )\) to SLE \((\kappa,\rho )\)’s. Electron. J. Probab. 18, 1-20 (2013) · Zbl 1338.60205 · doi:10.1214/EJP.v18-2376
[276] Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773-840 (1975) · doi:10.1103/RevModPhys.47.773
[277] Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583-600 (1983) · doi:10.1103/RevModPhys.55.583
[278] Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon\) expansion. Phys. Rep. 12, 75-199 (1974) · doi:10.1016/0370-1573(74)90023-4
[279] Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87, 404-409 (1952) · Zbl 0048.43305 · doi:10.1103/PhysRev.87.404
[280] Yao, C.L.: Law of large numbers for critical first-passage percolation on the triangular lattice. Electron. Commun. Probab. 19, 1-14 (2014) · Zbl 1315.60114 · doi:10.1214/ECP.v19-3268
[281] Yao, C.L.: Multi-arm incipient infinite clusters in 2D: scaling limits and winding numbers. Ann. Inst. H. Poincaré Probab. Statist. 54, 1848-1876 (2018) · Zbl 1417.60083 · doi:10.1214/17-AIHP858
[282] Yao, C.L.: Asymptotics for 2D critical and near-critical first-passage percolation (2018). arXiv:1806.03737 · Zbl 1423.60166
[283] Yao, C.L.: Limit theorems for critical first-passage percolation on the triangular lattice. Stoch. Proc. Appl. 128, 445-460 (2018) · Zbl 1380.60092 · doi:10.1016/j.spa.2017.05.002
[284] Yucesoy, B., Katzgraber, H.G., Machta, J.: Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model. Phys. Rev. Lett. 109, 177204 (2012) · doi:10.1103/PhysRevLett.109.177204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.