Huaroto, Gerardo; Neves, Wladimir Initial mixed-boundary value problem for anisotropic fractional degenerate parabolic equations. (English) Zbl 07549723 Commun. Math. Sci. 20, No. 5, 1279-1304 (2022). MSC: 35R11 35D30 35K55 35K61 35K65 PDF BibTeX XML Cite \textit{G. Huaroto} and \textit{W. Neves}, Commun. Math. Sci. 20, No. 5, 1279--1304 (2022; Zbl 07549723) Full Text: DOI OpenURL
Migórski, Stanisław; Dudek, Sylwia Steady flow with unilateral and leak/slip boundary conditions by the Stokes variational-hemivariational inequality. (English) Zbl 07548877 Appl. Anal. 101, No. 8, 2949-2965 (2022). MSC: 35Q35 47J20 49J40 76D07 35M86 PDF BibTeX XML Cite \textit{S. Migórski} and \textit{S. Dudek}, Appl. Anal. 101, No. 8, 2949--2965 (2022; Zbl 07548877) Full Text: DOI OpenURL
Alduncin, Gonzalo Variational interior and interface transmission conditions: multidomain mixed Darcy/Stokes control problems. (English) Zbl 07545224 Optim. Eng. 23, No. 2, 797-826 (2022). MSC: 47H05 47J22 49M27 49M29 76D07 76S05 PDF BibTeX XML Cite \textit{G. Alduncin}, Optim. Eng. 23, No. 2, 797--826 (2022; Zbl 07545224) Full Text: DOI OpenURL
Biagi, Stefano; Mugnai, Dimitri; Vecchi, Eugenio Necessary condition in a Brezis-Oswald-type problem for mixed local and nonlocal operators. (English) Zbl 07540968 Appl. Math. Lett. 132, Article ID 108177, 9 p. (2022). MSC: 35J92 35R11 35J67 35A01 35A02 PDF BibTeX XML Cite \textit{S. Biagi} et al., Appl. Math. Lett. 132, Article ID 108177, 9 p. (2022; Zbl 07540968) Full Text: DOI OpenURL
Liu, Yu-Xiang Uniform stabilization of a variable coefficient wave equation with nonlinear damping and acoustic boundary. (English) Zbl 07540655 Appl. Anal. 101, No. 9, 3347-3364 (2022). MSC: 35B40 35L20 35L71 PDF BibTeX XML Cite \textit{Y.-X. Liu}, Appl. Anal. 101, No. 9, 3347--3364 (2022; Zbl 07540655) Full Text: DOI OpenURL
Dhifaoui, Anis \(L^p\)-strong solution for the stationary exterior Stokes equations with Navier boundary condition. (English) Zbl 07539673 Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1403-1420 (2022). Reviewer: Dagmar Medková (Praha) MSC: 76D07 76D03 35Q30 PDF BibTeX XML Cite \textit{A. Dhifaoui}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1403--1420 (2022; Zbl 07539673) Full Text: DOI OpenURL
Ou, Yaobin; Yang, Lu Incompressible limit of isentropic Navier-Stokes equations with ill-prepared data in bounded domains. (English) Zbl 07531025 SIAM J. Math. Anal. 54, No. 3, 2948-2989 (2022). MSC: 35Q30 35M33 35B40 76N06 76M45 35D35 PDF BibTeX XML Cite \textit{Y. Ou} and \textit{L. Yang}, SIAM J. Math. Anal. 54, No. 3, 2948--2989 (2022; Zbl 07531025) Full Text: DOI OpenURL
Sofonea, Mircea; Tarzia, Domingo A. Tykhonov well-posedness of a heat transfer problem with unilateral constraints. (English) Zbl 07511500 Appl. Math., Praha 67, No. 2, 167-197 (2022). MSC: 49J40 49J20 49J52 49J45 35A16 35M86 PDF BibTeX XML Cite \textit{M. Sofonea} and \textit{D. A. Tarzia}, Appl. Math., Praha 67, No. 2, 167--197 (2022; Zbl 07511500) Full Text: DOI OpenURL
Gravina, Giovanni; Leoni, Giovanni On the existence of non-flat profiles for a Bernoulli free boundary problem. (English) Zbl 07499988 Adv. Calc. Var. 15, No. 1, 33-58 (2022). MSC: 35R35 35J20 35J25 35J86 PDF BibTeX XML Cite \textit{G. Gravina} and \textit{G. Leoni}, Adv. Calc. Var. 15, No. 1, 33--58 (2022; Zbl 07499988) Full Text: DOI OpenURL
Mamedov, Khanlar R.; Kilinç, Veysel; Yuldashev, Tursun K. The solution of mixed type equation with a integral equation. (English) Zbl 07498830 J. Adv. Math. Stud. 15, No. 1, 64-70 (2022). MSC: 35M12 35A01 35A02 35B35 PDF BibTeX XML Cite \textit{K. R. Mamedov} et al., J. Adv. Math. Stud. 15, No. 1, 64--70 (2022; Zbl 07498830) Full Text: Link OpenURL
Hissink Muller, Victor; Sonner, Stefanie Well-posedness of singular-degenerate porous medium type equations and application to biofilm models. (English) Zbl 1481.35261 J. Math. Anal. Appl. 509, No. 1, Article ID 125894, 34 p. (2022). MSC: 35K65 35K20 35K59 35Q92 PDF BibTeX XML Cite \textit{V. Hissink Muller} and \textit{S. Sonner}, J. Math. Anal. Appl. 509, No. 1, Article ID 125894, 34 p. (2022; Zbl 1481.35261) Full Text: DOI arXiv OpenURL
Korovina, M. V.; Matevossian, H. A.; Smirnov, I. N. On the asymptotics of solutions of a boundary value problem for the hyperbolic equation (at \(t\to\infty\)). (English) Zbl 07503350 Lobachevskii J. Math. 42, No. 15, 3684-3695 (2021). MSC: 35B40 35L20 PDF BibTeX XML Cite \textit{M. V. Korovina} et al., Lobachevskii J. Math. 42, No. 15, 3684--3695 (2021; Zbl 07503350) Full Text: DOI OpenURL
Dzhamalov, S. Z.; Ashurov, R. R.; Turakulov, Kh. Sh. The linear inverse problem for the three-dimensional Tricomi equation in a prismatic unbounded domain. (English) Zbl 07503342 Lobachevskii J. Math. 42, No. 15, 3606-3615 (2021). MSC: 35R30 35M12 PDF BibTeX XML Cite \textit{S. Z. Dzhamalov} et al., Lobachevskii J. Math. 42, No. 15, 3606--3615 (2021; Zbl 07503342) Full Text: DOI OpenURL
Cen, Zhongdi; Le, Anbo An efficient numerical method for pricing a Russian option with a finite time horizon. (English) Zbl 1480.91312 Int. J. Comput. Math. 98, No. 10, 2025-2039 (2021). MSC: 91G60 65M06 65M12 65M15 91G20 PDF BibTeX XML Cite \textit{Z. Cen} and \textit{A. Le}, Int. J. Comput. Math. 98, No. 10, 2025--2039 (2021; Zbl 1480.91312) Full Text: DOI OpenURL
Borisut, Piyachat; Auipa-arch, Chaiwat Positive solution of boundary value problem involving fractional pantograph differential equation. (English) Zbl 07475084 Thai J. Math. 19, No. 3, 1056-1067 (2021). MSC: 34-XX 26A33 34A34 34B15 54H25 PDF BibTeX XML Cite \textit{P. Borisut} and \textit{C. Auipa-arch}, Thai J. Math. 19, No. 3, 1056--1067 (2021; Zbl 07475084) Full Text: Link OpenURL
Karimov, E. T.; Toshtemirov, B. H. Non-local boundary value problem for a mixed-type equation involving the bi-ordinal Hilfer fractional differential operators. (English) Zbl 07473606 Uzb. Math. J. 65, No. 2, 61-77 (2021). MSC: 35M10 35M13 35R11 PDF BibTeX XML Cite \textit{E. T. Karimov} and \textit{B. H. Toshtemirov}, Uzb. Math. J. 65, No. 2, 61--77 (2021; Zbl 07473606) Full Text: DOI arXiv OpenURL
Weng, Sujun On a degenerate parabolic equation with Newtonian fluid\(\sim\)non-Newtonian fluid mixed type. (English) Zbl 07465002 J. Inequal. Appl. 2021, Paper No. 23, 19 p. (2021). MSC: 35K55 35K92 35K85 35R35 PDF BibTeX XML Cite \textit{S. Weng}, J. Inequal. Appl. 2021, Paper No. 23, 19 p. (2021; Zbl 07465002) Full Text: DOI OpenURL
Mirsaburov, M.; Islomov, N. B. Problem with a Bitsadze-Samarskii condition on parallel characteristics for a mixed type equation of the second kind. (English. Russian original) Zbl 1480.35300 Differ. Equ. 57, No. 10, 1358-1371 (2021); translation from Differ. Uravn. 57, No. 10, 1384-1396 (2021). MSC: 35M12 35A01 35A02 PDF BibTeX XML Cite \textit{M. Mirsaburov} and \textit{N. B. Islomov}, Differ. Equ. 57, No. 10, 1358--1371 (2021; Zbl 1480.35300); translation from Differ. Uravn. 57, No. 10, 1384--1396 (2021) Full Text: DOI OpenURL
Lomovtsev, F. E.; Spesivtseva, K. A. Mixed problem for a general 1D wave equation with characteristic second derivatives in a nonstationary boundary mode. (English. Russian original) Zbl 1477.74056 Math. Notes 110, No. 3, 329-338 (2021); translation from Mat. Zametki 110, No. 3, 345-357 (2021). MSC: 74J05 74H20 74H15 74S99 35Q74 65M25 PDF BibTeX XML Cite \textit{F. E. Lomovtsev} and \textit{K. A. Spesivtseva}, Math. Notes 110, No. 3, 329--338 (2021; Zbl 1477.74056); translation from Mat. Zametki 110, No. 3, 345--357 (2021) Full Text: DOI OpenURL
Li, Hengguang; Nicaise, Serge A priori analysis of an anisotropic finite element method for elliptic equations in polyhedral domains. (English) Zbl 1473.65311 Comput. Methods Appl. Math. 21, No. 1, 145-177 (2021). MSC: 65N30 35B65 35J25 PDF BibTeX XML Cite \textit{H. Li} and \textit{S. Nicaise}, Comput. Methods Appl. Math. 21, No. 1, 145--177 (2021; Zbl 1473.65311) Full Text: DOI OpenURL
Liang, Jiuyang; Liu, Pei; Xu, Zhenli A high-accurate fast Poisson solver based on harmonic surface mapping algorithm. (English) Zbl 07423050 Commun. Comput. Phys. 30, No. 1, 210-226 (2021). MSC: 65-XX 35J08 35Q70 33F05 78M16 PDF BibTeX XML Cite \textit{J. Liang} et al., Commun. Comput. Phys. 30, No. 1, 210--226 (2021; Zbl 07423050) Full Text: DOI OpenURL
Mamedov, Khanlar R.; Kılıç, Veysel; Yuldashev, T. K. On a boundary value problem with nonlocal integral condition for a parabolic-hyperbolic type equation. (English) Zbl 07401979 J. Contemp. Appl. Math. 11, No. 1, 63-74 (2021). MSC: 35M13 35B35 PDF BibTeX XML Cite \textit{K. R. Mamedov} et al., J. Contemp. Appl. Math. 11, No. 1, 63--74 (2021; Zbl 07401979) Full Text: Link OpenURL
Khairullin, R. S. Nonlocal Dezin problem for a mixed type equation of the second kind. (English. Russian original) Zbl 1472.35248 Differ. Equ. 57, No. 8, 1063-1069 (2021); translation from Differ. Uravn. 57, No. 8, 1091-1097 (2021). MSC: 35M12 35A02 35C10 PDF BibTeX XML Cite \textit{R. S. Khairullin}, Differ. Equ. 57, No. 8, 1063--1069 (2021; Zbl 1472.35248); translation from Differ. Uravn. 57, No. 8, 1091--1097 (2021) Full Text: DOI OpenURL
Shao, Mengru; Song, Lina; Li, Po-Wei A generalized finite difference method for solving Stokes interface problems. (English) Zbl 07390986 Eng. Anal. Bound. Elem. 132, 50-64 (2021). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{M. Shao} et al., Eng. Anal. Bound. Elem. 132, 50--64 (2021; Zbl 07390986) Full Text: DOI OpenURL
Feng, Xiaobing; Qiu, Hailong Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. (English) Zbl 07384717 J. Sci. Comput. 88, No. 2, Paper No. 31, 25 p. (2021). MSC: 65M60 65M06 65N30 65N12 65N15 76D07 35Q35 35R60 PDF BibTeX XML Cite \textit{X. Feng} and \textit{H. Qiu}, J. Sci. Comput. 88, No. 2, Paper No. 31, 25 p. (2021; Zbl 07384717) Full Text: DOI arXiv OpenURL
Aliev, Akbar B.; Shafieva, Gulshan Kh. Mixed problem with dynamical transmission condition for a one-dimensional hyperbolic equation with strong dissipation. (English) Zbl 1471.35195 Math. Methods Appl. Sci. 44, No. 8, 7121-7133 (2021). MSC: 35L53 35L71 35B40 PDF BibTeX XML Cite \textit{A. B. Aliev} and \textit{G. Kh. Shafieva}, Math. Methods Appl. Sci. 44, No. 8, 7121--7133 (2021; Zbl 1471.35195) Full Text: DOI OpenURL
Gallistl, Dietmar; Sprekeler, Timo; Süli, Endre Mixed finite element approximation of periodic Hamilton-Jacobi-Bellman problems with application to numerical homogenization. (English) Zbl 07382143 Multiscale Model. Simul. 19, No. 2, 1041-1065 (2021). MSC: 65-XX 35B27 35J60 65N12 65N15 65N30 PDF BibTeX XML Cite \textit{D. Gallistl} et al., Multiscale Model. Simul. 19, No. 2, 1041--1065 (2021; Zbl 07382143) Full Text: DOI arXiv OpenURL
Alvino, A.; Chiacchio, F.; Nitsch, C.; Trombetti, C. Sharp estimates for solutions to elliptic problems with mixed boundary conditions. (English. French summary) Zbl 1473.35114 J. Math. Pures Appl. (9) 152, 251-261 (2021). Reviewer: Peter Lindqvist (Trondheim) MSC: 35J05 35B06 PDF BibTeX XML Cite \textit{A. Alvino} et al., J. Math. Pures Appl. (9) 152, 251--261 (2021; Zbl 1473.35114) Full Text: DOI arXiv OpenURL
Seelmann, Albrecht The Laplacian on Cartesian products with mixed boundary conditions. (English) Zbl 1471.35099 Arch. Math. 117, No. 1, 87-94 (2021). MSC: 35J05 46E35 35J25 PDF BibTeX XML Cite \textit{A. Seelmann}, Arch. Math. 117, No. 1, 87--94 (2021; Zbl 1471.35099) Full Text: DOI arXiv OpenURL
Zaitseva, N. V. Uniqueness of the solution of a nonlocal problem for an elliptic-hyperbolic equation with singular coefficients. (English. Russian original) Zbl 1468.35005 Math. Notes 109, No. 4, 563-569 (2021); translation from Mat. Zametki 109, No. 4, 544-551 (2021). MSC: 35A02 35M12 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Math. Notes 109, No. 4, 563--569 (2021; Zbl 1468.35005); translation from Mat. Zametki 109, No. 4, 544--551 (2021) Full Text: DOI OpenURL
Khalilov, Q. S. A nonlocal problem for a third order parabolic-hyperbolic equation with a spectral parameter. (English) Zbl 1468.35097 Lobachevskii J. Math. 42, No. 6, 1274-1285 (2021). MSC: 35M13 35P05 PDF BibTeX XML Cite \textit{Q. S. Khalilov}, Lobachevskii J. Math. 42, No. 6, 1274--1285 (2021; Zbl 1468.35097) Full Text: DOI OpenURL
Calvo, Juan; Hingant, Erwan; Yvinec, Romain The initial-boundary value problem for the Lifshitz-Slyozov equation with non-smooth rates at the boundary. (English) Zbl 1466.35307 Nonlinearity 34, No. 4, 1975-2017 (2021). MSC: 35Q49 35Q82 82D60 35A01 35A02 35B60 35L04 35M13 PDF BibTeX XML Cite \textit{J. Calvo} et al., Nonlinearity 34, No. 4, 1975--2017 (2021; Zbl 1466.35307) Full Text: DOI arXiv OpenURL
Lamichhane, Bishnu P.; Shaw-Carmody, Jordan A. A local projection stabilisation finite element method for the Stokes equations using biorthogonal systems. (English) Zbl 1468.65197 J. Comput. Appl. Math. 393, Article ID 113542, 12 p. (2021). MSC: 65N30 65N15 65N12 76D07 76M10 PDF BibTeX XML Cite \textit{B. P. Lamichhane} and \textit{J. A. Shaw-Carmody}, J. Comput. Appl. Math. 393, Article ID 113542, 12 p. (2021; Zbl 1468.65197) Full Text: DOI OpenURL
Amrouche, Chérif; Boussetouan, Imane Vector potentials with mixed boundary conditions: application to the Stokes problem with pressure and Navier-type boundary conditions. (English) Zbl 1465.35122 SIAM J. Math. Anal. 53, No. 2, 1745-1784 (2021). MSC: 35J05 35J20 35J25 76D03 76D07 PDF BibTeX XML Cite \textit{C. Amrouche} and \textit{I. Boussetouan}, SIAM J. Math. Anal. 53, No. 2, 1745--1784 (2021; Zbl 1465.35122) Full Text: DOI OpenURL
Zaitseva, N. V. Nonlocal boundary value problem with an integral condition for a mixed type equation with a singular coefficient. (English. Russian original) Zbl 1461.35162 Differ. Equ. 57, No. 2, 210-220 (2021); translation from Differ. Uravn. 57, No. 2, 224-234 (2021). MSC: 35M12 35C10 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Differ. Equ. 57, No. 2, 210--220 (2021; Zbl 1461.35162); translation from Differ. Uravn. 57, No. 2, 224--234 (2021) Full Text: DOI OpenURL
Grubišić, Luka; Ljulj, Matko; Mehrmann, Volker; Tambača, Josip Modeling and discretization methods for the numerical simulation of elastic frame structures. (English) Zbl 1452.74107 ETNA, Electron. Trans. Numer. Anal. 54, 1-30 (2021). MSC: 74S05 74K10 74K30 74G15 74H15 65M15 65M60 PDF BibTeX XML Cite \textit{L. Grubišić} et al., ETNA, Electron. Trans. Numer. Anal. 54, 1--30 (2021; Zbl 1452.74107) Full Text: DOI arXiv Link OpenURL
Yuan, Hairong; Zhao, Qin Stabilization effect of frictions for transonic shocks in steady compressible Euler flows passing three-dimensional ducts. (English) Zbl 07552300 Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 2, 470-502 (2020). MSC: 35M32 35Q31 35R35 76H05 76L05 76N10 PDF BibTeX XML Cite \textit{H. Yuan} and \textit{Q. Zhao}, Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 2, 470--502 (2020; Zbl 07552300) Full Text: DOI OpenURL
Sang, Yanbin; He, Luxuan Existence and uniqueness of nontrivial solution for nonlinear fractional multi-point boundary value problem with a parameter. (English) Zbl 07535327 Adv. Difference Equ. 2020, Paper No. 51, 17 p. (2020). MSC: 34A08 34B18 26A33 34B10 34B15 PDF BibTeX XML Cite \textit{Y. Sang} and \textit{L. He}, Adv. Difference Equ. 2020, Paper No. 51, 17 p. (2020; Zbl 07535327) Full Text: DOI OpenURL
Choudhary, S.; Jarwal, V. K. Magnetized nano fluid flow over a stretching sheet due to chemical reaction and nonlinear thermal radiation with Navier slip and convective heating. (English) Zbl 07525576 J. Rajasthan Acad. Phys. Sci. 19, No. 3-4, 225-244 (2020). MSC: 35M11 76D05 76W05 80A20 PDF BibTeX XML Cite \textit{S. Choudhary} and \textit{V. K. Jarwal}, J. Rajasthan Acad. Phys. Sci. 19, No. 3--4, 225--244 (2020; Zbl 07525576) Full Text: Link OpenURL
Ouyang, Baiping; Li, Yuanfei Blow-up phenomena of a class of mixed parabolic systems under nonlinear boundary conditions in high dimensional spaces. (Chinese. English summary) Zbl 1474.35147 Math. Pract. Theory 50, No. 23, 167-175 (2020). MSC: 35B44 35K55 PDF BibTeX XML Cite \textit{B. Ouyang} and \textit{Y. Li}, Math. Pract. Theory 50, No. 23, 167--175 (2020; Zbl 1474.35147) OpenURL
Abdullaev, O. Kh.; Islomov, B. I. Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order. (English. Russian original) Zbl 1465.35312 Russ. Math. 64, No. 10, 29-42 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 10, 33-46 (2020). MSC: 35M12 35R11 PDF BibTeX XML Cite \textit{O. Kh. Abdullaev} and \textit{B. I. Islomov}, Russ. Math. 64, No. 10, 29--42 (2020; Zbl 1465.35312); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 10, 33--46 (2020) Full Text: DOI OpenURL
Miroshnikova, Elena Pressure-driven flow in a thin pipe with rough boundary. (English) Zbl 1464.76026 Z. Angew. Math. Phys. 71, No. 4, Paper No. 138, 20 p. (2020). MSC: 76D07 76M45 PDF BibTeX XML Cite \textit{E. Miroshnikova}, Z. Angew. Math. Phys. 71, No. 4, Paper No. 138, 20 p. (2020; Zbl 1464.76026) Full Text: DOI OpenURL
Wang, Juan; Zhao, Jie Homogenization of higher-order equations with mixed boundary condition. (Chinese. English summary) Zbl 1474.35279 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 4, 925-933 (2020). MSC: 35J40 PDF BibTeX XML Cite \textit{J. Wang} and \textit{J. Zhao}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 4, 925--933 (2020; Zbl 1474.35279) OpenURL
Bänsch, Eberhard; Gahn, Markus A mixed finite-element method for elliptic operators with Wentzell boundary condition. (English) Zbl 1468.65184 IMA J. Numer. Anal. 40, No. 1, 87-108 (2020). Reviewer: Ilia V. Boikov (Penza) MSC: 65N30 PDF BibTeX XML Cite \textit{E. Bänsch} and \textit{M. Gahn}, IMA J. Numer. Anal. 40, No. 1, 87--108 (2020; Zbl 1468.65184) Full Text: DOI OpenURL
Ray, Atul Kumar; Vasu, B.; Murthy, P. V. S. N.; Gorla, Rama S. R. Non-similar solution of Eyring-Powell fluid flow and heat transfer with convective boundary condition: homotopy analysis method. (English) Zbl 1459.80005 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 16, 22 p. (2020). MSC: 80A19 76A05 80M99 PDF BibTeX XML Cite \textit{A. K. Ray} et al., Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 16, 22 p. (2020; Zbl 1459.80005) Full Text: DOI OpenURL
He, Yanqin; Han, Xiaoling The existence and uniqueness of positive solutions for a class of third-order boundary value problems with integral boundary conditions. (Chinese. English summary) Zbl 1463.34096 J. Sichuan Univ., Nat. Sci. Ed. 57, No. 5, 852-856 (2020). MSC: 34B18 34B10 34A45 PDF BibTeX XML Cite \textit{Y. He} and \textit{X. Han}, J. Sichuan Univ., Nat. Sci. Ed. 57, No. 5, 852--856 (2020; Zbl 1463.34096) Full Text: DOI OpenURL
Matevossian, H. A. On the biharmonic problem with the Steklov-type and Farwig boundary conditions. (English) Zbl 1454.35108 Lobachevskii J. Math. 41, No. 10, 2053-2059 (2020). MSC: 35J40 31B30 PDF BibTeX XML Cite \textit{H. A. Matevossian}, Lobachevskii J. Math. 41, No. 10, 2053--2059 (2020; Zbl 1454.35108) Full Text: DOI OpenURL
Urinov, A. K.; Okboev, A. B. Nonlocal boundary-value problem for a parabolic-hyperbolic equation of the second kind. (English) Zbl 1452.35114 Lobachevskii J. Math. 41, No. 9, 1886-1897 (2020). MSC: 35M12 35A01 35A02 PDF BibTeX XML Cite \textit{A. K. Urinov} and \textit{A. B. Okboev}, Lobachevskii J. Math. 41, No. 9, 1886--1897 (2020; Zbl 1452.35114) Full Text: DOI OpenURL
Gekkieva, S. Kh. Gevrey problem for a loaded mixed parabolic equation with a fractional derivative. (English. Russian original) Zbl 1450.35266 J. Math. Sci., New York 250, No. 5, 746-752 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 31-37 (2018). MSC: 35R11 35M13 PDF BibTeX XML Cite \textit{S. Kh. Gekkieva}, J. Math. Sci., New York 250, No. 5, 746--752 (2020; Zbl 1450.35266); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 31--37 (2018) Full Text: DOI OpenURL
Zikirov, O. S.; Kholikov, D. K. Solvability of a mixed problem with an integral condition for a third-order hyperbolic equation. (English. Russian original) Zbl 1448.35327 J. Math. Sci., New York 245, No. 3, 323-331 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 30-38 (2018). MSC: 35L35 35M12 PDF BibTeX XML Cite \textit{O. S. Zikirov} and \textit{D. K. Kholikov}, J. Math. Sci., New York 245, No. 3, 323--331 (2020; Zbl 1448.35327); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 144, 30--38 (2018) Full Text: DOI OpenURL
Ijaz Khan, M.; Alzahrani, Faris Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: numerical computations. (English) Zbl 1439.76008 Int. J. Mod. Phys. B 34, No. 13, Article ID 2050132, 16 p. (2020). MSC: 76A10 76-10 76V05 PDF BibTeX XML Cite \textit{M. Ijaz Khan} and \textit{F. Alzahrani}, Int. J. Mod. Phys. B 34, No. 13, Article ID 2050132, 16 p. (2020; Zbl 1439.76008) Full Text: DOI OpenURL
Ling, Zhengqiu; He, Bing Blow-up and effectiveness analysis in a parabolic equation with dissipative gradient function. (Chinese. English summary) Zbl 1449.35118 J. Jilin Univ., Sci. 58, No. 1, 47-53 (2020). MSC: 35B44 35K55 PDF BibTeX XML Cite \textit{Z. Ling} and \textit{B. He}, J. Jilin Univ., Sci. 58, No. 1, 47--53 (2020; Zbl 1449.35118) Full Text: DOI OpenURL
Zaitseva, Natalya Vladimirovna Boundary value problem with integral condition for the mixed type equation with a singular coefficient. (English) Zbl 1442.35273 Kravchenko, Vladislav V. (ed.) et al., Transmutation operators and applications. Cham: Birkhäuser. Trends Math., 671-686 (2020). MSC: 35M12 35A01 35A02 35C10 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, in: Transmutation operators and applications. Cham: Birkhäuser. 671--686 (2020; Zbl 1442.35273) Full Text: DOI OpenURL
Mirsaburova, Gulnora M. Problem with nonlocal conditions, specified on parts of the boundary characteristics and on the degeneracy segment, for the Gellerstedt equation with singular coefficient. (English. Russian original) Zbl 1441.35178 Russ. Math. 64, No. 1, 58-77 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 64-83 (2020). MSC: 35M12 PDF BibTeX XML Cite \textit{G. M. Mirsaburova}, Russ. Math. 64, No. 1, 58--77 (2020; Zbl 1441.35178); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 64--83 (2020) Full Text: DOI OpenURL
Arndt, Rafael; Ceretani, Andrea N.; Rautenberg, Carlos N. On existence and uniqueness of solutions to a Boussinesq system with nonlinear and mixed boundary conditions. (English) Zbl 1442.35320 J. Math. Anal. Appl. 490, No. 1, Article ID 124201, 28 p. (2020). MSC: 35Q35 76D05 35D30 80A19 PDF BibTeX XML Cite \textit{R. Arndt} et al., J. Math. Anal. Appl. 490, No. 1, Article ID 124201, 28 p. (2020; Zbl 1442.35320) Full Text: DOI arXiv OpenURL
Gordienko, Valeriĭ M. The works of the S. K. Godunov seminar on hyperbolic equations. (Russian. English summary) Zbl 1439.35002 Sib. Èlektron. Mat. Izv. 17, A.59-A.67 (2020). MSC: 35-03 01A60 01A70 35Lxx PDF BibTeX XML Cite \textit{V. M. Gordienko}, Sib. Èlektron. Mat. Izv. 17, A.59-A.67 (2020; Zbl 1439.35002) Full Text: DOI OpenURL
Guo, Boling; Zeng, Lan; Ni, Guoxi Incompressible limit for compressible nematic liquid crystal flows in a bounded domain. (English) Zbl 1441.35196 Appl. Anal. 99, No. 8, 1402-1424 (2020). MSC: 35Q35 35M33 76A15 76N10 35D35 PDF BibTeX XML Cite \textit{B. Guo} et al., Appl. Anal. 99, No. 8, 1402--1424 (2020; Zbl 1441.35196) Full Text: DOI OpenURL
Deng, Yongbo; Liu, Zhenyu; Korvink, Jan G. Topology optimization on two-dimensional manifolds. (English) Zbl 1442.74167 Comput. Methods Appl. Mech. Eng. 364, Article ID 112937, 24 p. (2020). MSC: 74P15 PDF BibTeX XML Cite \textit{Y. Deng} et al., Comput. Methods Appl. Mech. Eng. 364, Article ID 112937, 24 p. (2020; Zbl 1442.74167) Full Text: DOI arXiv OpenURL
Bathory, Michal; Bulíček, Miroslav; Souček, Ondřej Existence and qualitative theory for nonlinear elliptic systems with a nonlinear interface condition used in electrochemistry. (English) Zbl 1437.35274 Z. Angew. Math. Phys. 71, No. 3, Paper No. 74, 24 p. (2020). MSC: 35J57 35M32 PDF BibTeX XML Cite \textit{M. Bathory} et al., Z. Angew. Math. Phys. 71, No. 3, Paper No. 74, 24 p. (2020; Zbl 1437.35274) Full Text: DOI arXiv OpenURL
Kisiel, Konrad; Chełmiński, Krzysztof Prandtl-Reuss dynamical elasto-perfect plasticity without safe-load conditions. (English) Zbl 1437.35656 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111678, 28 p. (2020). MSC: 35Q74 74C05 74H20 PDF BibTeX XML Cite \textit{K. Kisiel} and \textit{K. Chełmiński}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111678, 28 p. (2020; Zbl 1437.35656) Full Text: DOI OpenURL
Boulaaras, Salah; Habita, Khaled; Haiour, Mohamed A posteriori error estimates for the generalized overlapping domain decomposition method for parabolic equation with mixed boundary condition. (English) Zbl 1431.65170 Bol. Soc. Parana. Mat. (3) 38, No. 4, 111-126 (2020). MSC: 65M60 35K20 65N55 65N15 PDF BibTeX XML Cite \textit{S. Boulaaras} et al., Bol. Soc. Parana. Mat. (3) 38, No. 4, 111--126 (2020; Zbl 1431.65170) Full Text: Link OpenURL
Kim, Tujin; Cao, Daomin A non-steady system with friction boundary conditions for flow of heat-conducting incompressible viscous fluids. (English) Zbl 1433.35283 J. Math. Anal. Appl. 484, No. 1, Article ID 123676, 42 p. (2020). MSC: 35Q35 80A19 76R10 PDF BibTeX XML Cite \textit{T. Kim} and \textit{D. Cao}, J. Math. Anal. Appl. 484, No. 1, Article ID 123676, 42 p. (2020; Zbl 1433.35283) Full Text: DOI OpenURL
Jeon, Junkee; Oh, Jehan \((1+2)\)-dimensional Black-Scholes equations with mixed boundary conditions. (English) Zbl 1433.35162 Commun. Pure Appl. Anal. 19, No. 2, 699-714 (2020). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 35K20 91G20 35Q91 35K65 PDF BibTeX XML Cite \textit{J. Jeon} and \textit{J. Oh}, Commun. Pure Appl. Anal. 19, No. 2, 699--714 (2020; Zbl 1433.35162) Full Text: DOI OpenURL
Baglan, Irem Fourier method for inverse coefficient Euler-Bernoulli beam equation. (English) Zbl 07539348 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 514-527 (2019). MSC: 35R30 35B35 35L76 PDF BibTeX XML Cite \textit{I. Baglan}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 514--527 (2019; Zbl 07539348) Full Text: DOI OpenURL
Abdullaev, O. Kh. Analog of the Gellerstedt problem for the mixed type equation with integral-differential operators of fractional order. (English) Zbl 07382329 Uzb. Math. J. 2019, No. 3, 4-18 (2019). MSC: 35M10 35M12 PDF BibTeX XML Cite \textit{O. Kh. Abdullaev}, Uzb. Math. J. 2019, No. 3, 4--18 (2019; Zbl 07382329) Full Text: DOI OpenURL
Chung, Soon-Yeong; Hwang, Jaeho The discrete \(p\)-Schrödinger equations under the mixed boundary conditions on networks. (English) Zbl 1451.39003 Physica D 395, 43-59 (2019). MSC: 39A12 05C50 35P05 PDF BibTeX XML Cite \textit{S.-Y. Chung} and \textit{J. Hwang}, Physica D 395, 43--59 (2019; Zbl 1451.39003) Full Text: DOI OpenURL
Krischok, A.; Linder, C. A generalized inf-sup test for multi-field mixed-variational methods. (English) Zbl 1442.65378 Comput. Methods Appl. Mech. Eng. 357, Article ID 112497, 26 p. (2019). MSC: 65N30 65N12 74S05 PDF BibTeX XML Cite \textit{A. Krischok} and \textit{C. Linder}, Comput. Methods Appl. Mech. Eng. 357, Article ID 112497, 26 p. (2019; Zbl 1442.65378) Full Text: DOI OpenURL
Vu-Huu, T.; Le-Thanh, C.; Nguyen-Xuan, H.; Abdel-Wahab, M. A high-order mixed polygonal finite element for incompressible Stokes flow analysis. (English) Zbl 1441.76073 Comput. Methods Appl. Mech. Eng. 356, 175-198 (2019). MSC: 76M10 65N30 76D07 PDF BibTeX XML Cite \textit{T. Vu-Huu} et al., Comput. Methods Appl. Mech. Eng. 356, 175--198 (2019; Zbl 1441.76073) Full Text: DOI OpenURL
Sabitov, K. B. Dezin problem for an equation of the mixed type with a power-law degeneracy. (English. Russian original) Zbl 1435.35263 Differ. Equ. 55, No. 10, 1384-1389 (2019); translation from Differ. Uravn. 55, No. 10, 1426-1431 (2019). MSC: 35M12 35C10 PDF BibTeX XML Cite \textit{K. B. Sabitov}, Differ. Equ. 55, No. 10, 1384--1389 (2019; Zbl 1435.35263); translation from Differ. Uravn. 55, No. 10, 1426--1431 (2019) Full Text: DOI OpenURL
Polosin, A. A. Gellerstedt type directional derivative problem for an equation of the mixed type with a spectral parameter. (English. Russian original) Zbl 1435.35262 Differ. Equ. 55, No. 10, 1373-1383 (2019); translation from Differ. Uravn. 55, No. 10, 1416-1425 (2019). MSC: 35M12 35R09 PDF BibTeX XML Cite \textit{A. A. Polosin}, Differ. Equ. 55, No. 10, 1373--1383 (2019; Zbl 1435.35262); translation from Differ. Uravn. 55, No. 10, 1416--1425 (2019) Full Text: DOI OpenURL
Tsaava, Medea The boundary value problems for the bi-Laplace-Beltrami equation. (English) Zbl 1437.35248 Mem. Differ. Equ. Math. Phys. 77, 93-103 (2019). MSC: 35J40 35M12 PDF BibTeX XML Cite \textit{M. Tsaava}, Mem. Differ. Equ. Math. Phys. 77, 93--103 (2019; Zbl 1437.35248) Full Text: Link OpenURL
Zhan, Huashui The well-posedness problem of a hyperbolic-parabolic mixed type equation on an unbounded domain. (English) Zbl 1428.35217 Anal. Math. Phys. 9, No. 4, 1849-1864 (2019). MSC: 35L65 35K85 35R35 PDF BibTeX XML Cite \textit{H. Zhan}, Anal. Math. Phys. 9, No. 4, 1849--1864 (2019; Zbl 1428.35217) Full Text: DOI OpenURL
Mirsaburov, M.; Begaliev, O.; Khurramov, N. Kh. Generalization of the Tricomi problem. (English. Russian original) Zbl 1430.35163 Differ. Equ. 55, No. 8, 1084-1093 (2019); translation from Differ. Uravn. 55, No. 8, 1118-1127 (2019). MSC: 35M12 35A01 35A02 PDF BibTeX XML Cite \textit{M. Mirsaburov} et al., Differ. Equ. 55, No. 8, 1084--1093 (2019; Zbl 1430.35163); translation from Differ. Uravn. 55, No. 8, 1118--1127 (2019) Full Text: DOI OpenURL
Dubois, Francois; Greff, Isabelle; Pierre, Charles Raviart-Thomas finite elements of Petrov-Galerkin type. (English) Zbl 1427.65335 ESAIM, Math. Model. Numer. Anal. 53, No. 5, 1553-1576 (2019). MSC: 65N08 65N12 65N30 35J25 35J05 PDF BibTeX XML Cite \textit{F. Dubois} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 5, 1553--1576 (2019; Zbl 1427.65335) Full Text: DOI arXiv OpenURL
Ravindran, S. S. Partitioned time-stepping scheme for an MHD system with temperature-dependent coefficients. (English) Zbl 07130810 IMA J. Numer. Anal. 39, No. 4, 1860-1887 (2019). MSC: 65-XX PDF BibTeX XML Cite \textit{S. S. Ravindran}, IMA J. Numer. Anal. 39, No. 4, 1860--1887 (2019; Zbl 07130810) Full Text: DOI OpenURL
Ayadi, Mekki; Ayed, Hela; Baffico, Leonardo; Sassi, Taoufik Stokes problem with slip boundary conditions of friction type: error analysis of a four-field mixed variational formulation. (English) Zbl 1427.65348 J. Sci. Comput. 81, No. 1, 312-341 (2019). MSC: 65N30 76M10 35B45 35A01 35A02 76D08 76D07 35A15 PDF BibTeX XML Cite \textit{M. Ayadi} et al., J. Sci. Comput. 81, No. 1, 312--341 (2019; Zbl 1427.65348) Full Text: DOI OpenURL
Kapustin, N.; Kholomeeva, A. Spectral solution of a boundary value problem for equation of mixed type. (English) Zbl 1428.35238 Lobachevskii J. Math. 40, No. 7, 981-983 (2019). MSC: 35M12 PDF BibTeX XML Cite \textit{N. Kapustin} and \textit{A. Kholomeeva}, Lobachevskii J. Math. 40, No. 7, 981--983 (2019; Zbl 1428.35238) Full Text: DOI OpenURL
Li, Xianzhi; Fan, Zhongguang A low order mixed finite element formulation of the Sobolev equation with nonlinear boundary conditions. (Chinese. English summary) Zbl 1438.65237 J. Hangzhou Norm. Univ., Nat. Sci. 18, No. 1, 88-92 (2019). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{X. Li} and \textit{Z. Fan}, J. Hangzhou Norm. Univ., Nat. Sci. 18, No. 1, 88--92 (2019; Zbl 1438.65237) Full Text: DOI OpenURL
Zhan, Huashui; Feng, Zhaosheng Stability of hyperbolic-parabolic mixed type equations. (English) Zbl 1421.35230 Dyn. Partial Differ. Equ. 16, No. 3, 253-272 (2019). MSC: 35M13 35B35 35K65 35L70 35N30 PDF BibTeX XML Cite \textit{H. Zhan} and \textit{Z. Feng}, Dyn. Partial Differ. Equ. 16, No. 3, 253--272 (2019; Zbl 1421.35230) Full Text: DOI OpenURL
Gravina, Giovanni; Leoni, Giovanni Higher order Gamma-limits for singularly perturbed Dirichlet-Neumann problems. (English) Zbl 1423.35019 SIAM J. Math. Anal. 51, No. 4, 3337-3372 (2019). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35B25 35J25 49J45 35J20 PDF BibTeX XML Cite \textit{G. Gravina} and \textit{G. Leoni}, SIAM J. Math. Anal. 51, No. 4, 3337--3372 (2019; Zbl 1423.35019) Full Text: DOI arXiv OpenURL
Kan, Toru; Suzuki, Masahiro Uniform estimates and uniqueness of stationary solutions to the drift-diffusion model for semiconductors. (English) Zbl 1421.35092 Appl. Anal. 98, No. 10, 1799-1810 (2019). MSC: 35J57 35A02 PDF BibTeX XML Cite \textit{T. Kan} and \textit{M. Suzuki}, Appl. Anal. 98, No. 10, 1799--1810 (2019; Zbl 1421.35092) Full Text: DOI OpenURL
Hoeltgen, Laurent; Kleefeld, Andreas; Harris, Isaac; Breuss, Michael Theoretical foundation of the weighted Laplace inpainting problem. (English) Zbl 07088741 Appl. Math., Praha 64, No. 3, 281-300 (2019). MSC: 35J15 35J70 46E35 94A08 PDF BibTeX XML Cite \textit{L. Hoeltgen} et al., Appl. Math., Praha 64, No. 3, 281--300 (2019; Zbl 07088741) Full Text: DOI arXiv OpenURL
Zeng, Lan; Ni, Guoxi; Ai, Xiao Low Mach number limit of global solutions to 3-D compressible nematic liquid crystal flows with Dirichlet boundary condition. (English) Zbl 1417.35149 Math. Methods Appl. Sci. 42, No. 6, 2053-2068 (2019). MSC: 35Q35 35M33 76A15 76N99 35D35 PDF BibTeX XML Cite \textit{L. Zeng} et al., Math. Methods Appl. Sci. 42, No. 6, 2053--2068 (2019; Zbl 1417.35149) Full Text: DOI OpenURL
Zhang, Yu; Bi, Hai; Yang, Yidu The two-grid discretization of Ciarlet-Raviart mixed method for biharmonic eigenvalue problems. (English) Zbl 1456.65178 Appl. Numer. Math. 138, 94-113 (2019). MSC: 65N55 65N25 65N30 35P99 74K20 74H45 35Q74 31A30 65F10 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Appl. Numer. Math. 138, 94--113 (2019; Zbl 1456.65178) Full Text: DOI OpenURL
Gallistl, Dietmar; Süli, Endre Mixed finite element approximation of the Hamilton-Jacobi-Bellman equation with Cordes coefficients. (English) Zbl 1412.65186 SIAM J. Numer. Anal. 57, No. 2, 592-614 (2019). MSC: 65N12 65N15 65N30 35F21 65N50 PDF BibTeX XML Cite \textit{D. Gallistl} and \textit{E. Süli}, SIAM J. Numer. Anal. 57, No. 2, 592--614 (2019; Zbl 1412.65186) Full Text: DOI OpenURL
Pulkina, Ludmila S.; Beylin, Alexander B. Nonlocal approach to problems on longitudinal vibration in a short bar. (English) Zbl 1409.35135 Electron. J. Differ. Equ. 2019, Paper No. 29, 9 p. (2019). MSC: 35L35 PDF BibTeX XML Cite \textit{L. S. Pulkina} and \textit{A. B. Beylin}, Electron. J. Differ. Equ. 2019, Paper No. 29, 9 p. (2019; Zbl 1409.35135) Full Text: Link OpenURL
Ceretani, Andrea N.; Rautenberg, Carlos N. The Boussinesq system with mixed non-smooth boundary conditions and do-nothing boundary flow. (English) Zbl 1409.76022 Z. Angew. Math. Phys. 70, No. 1, Paper No. 14, 24 p. (2019). MSC: 76D05 80A20 35Q35 PDF BibTeX XML Cite \textit{A. N. Ceretani} and \textit{C. N. Rautenberg}, Z. Angew. Math. Phys. 70, No. 1, Paper No. 14, 24 p. (2019; Zbl 1409.76022) Full Text: DOI OpenURL
Zhou, Zongfu; Qiao, Yan Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions. (English) Zbl 07509608 Bound. Value Probl. 2018, Paper No. 152, 10 p. (2018). MSC: 34A08 34B15 34B18 PDF BibTeX XML Cite \textit{Z. Zhou} and \textit{Y. Qiao}, Bound. Value Probl. 2018, Paper No. 152, 10 p. (2018; Zbl 07509608) Full Text: DOI OpenURL
Furuya, Kiyoko On “well posed function spaces” for \(L^2\)-illposed hyperbolic equations. (English) Zbl 1456.47013 J. Nonlinear Convex Anal. 19, No. 9, 1525-1530 (2018). MSC: 47D06 35M13 35R25 PDF BibTeX XML Cite \textit{K. Furuya}, J. Nonlinear Convex Anal. 19, No. 9, 1525--1530 (2018; Zbl 1456.47013) Full Text: Link OpenURL
Ding, Xiao-Li; Jiang, Yao-Lin Analytical solutions for multi-term time-space coupling fractional delay partial differential equations with mixed boundary conditions. (English) Zbl 07263843 Commun. Nonlinear Sci. Numer. Simul. 65, 231-247 (2018). MSC: 00-XX PDF BibTeX XML Cite \textit{X.-L. Ding} and \textit{Y.-L. Jiang}, Commun. Nonlinear Sci. Numer. Simul. 65, 231--247 (2018; Zbl 07263843) Full Text: DOI OpenURL
Yu, Yue; Bargos, Fabiano F.; You, Huaiqian; Parks, Michael L.; Bittencourt, Marco L.; Karniadakis, George E. A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. (English) Zbl 1440.74045 Comput. Methods Appl. Mech. Eng. 340, 905-931 (2018). MSC: 74A45 74S05 65N30 PDF BibTeX XML Cite \textit{Y. Yu} et al., Comput. Methods Appl. Mech. Eng. 340, 905--931 (2018; Zbl 1440.74045) Full Text: DOI OpenURL
Yang, Yidu; Bi, Hai; Zhang, Yu The adaptive Ciarlet-Raviart mixed method for biharmonic problems with simply supported boundary condition. (English) Zbl 1429.65280 Appl. Math. Comput. 339, 206-219 (2018). MSC: 65N30 35J40 65N15 65N25 PDF BibTeX XML Cite \textit{Y. Yang} et al., Appl. Math. Comput. 339, 206--219 (2018; Zbl 1429.65280) Full Text: DOI OpenURL
Egorov, I. E.; Efimova, E. S.; Tikhonova, I. M. On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter. (Russian) Zbl 1438.35289 Mat. Zamet. SVFU 25, No. 1, 15-24 (2018). MSC: 35M12 PDF BibTeX XML Cite \textit{I. E. Egorov} et al., Mat. Zamet. SVFU 25, No. 1, 15--24 (2018; Zbl 1438.35289) Full Text: DOI OpenURL
Azman, I.; Jleli, M.; López, B.; Sadarangani, K.; Samet, B. Positive solutions for a class of fractional boundary value problems with fractional boundary conditions. (English) Zbl 1438.34018 J. Nonlinear Sci. Appl. 11, No. 2, 237-251 (2018). MSC: 34A08 31B10 34A45 34B18 PDF BibTeX XML Cite \textit{I. Azman} et al., J. Nonlinear Sci. Appl. 11, No. 2, 237--251 (2018; Zbl 1438.34018) Full Text: DOI OpenURL
Yu, Qiang; Xu, Hang Novel wavelet-homotopy Galerkin technique for analysis of lid-driven cavity flow and heat transfer with non-uniform boundary conditions. (English) Zbl 1416.76236 AMM, Appl. Math. Mech., Engl. Ed. 39, No. 12, 1691-1718 (2018). MSC: 76M25 65M60 80A20 PDF BibTeX XML Cite \textit{Q. Yu} and \textit{H. Xu}, AMM, Appl. Math. Mech., Engl. Ed. 39, No. 12, 1691--1718 (2018; Zbl 1416.76236) Full Text: DOI OpenURL
Guo, Limin; Liu, Lishan; Wu, Yonghong Iterative unique positive solutions for singular \(p\)-Laplacian fractional differential equation system with several parameters. (English) Zbl 1420.34016 Nonlinear Anal., Model. Control 23, No. 2, 182-203 (2018). MSC: 34A08 34B16 34B10 34B18 34A45 PDF BibTeX XML Cite \textit{L. Guo} et al., Nonlinear Anal., Model. Control 23, No. 2, 182--203 (2018; Zbl 1420.34016) Full Text: DOI OpenURL
You, Hojun; Kim, Chongam High-order multi-dimensional limiting strategy with subcell resolution. I: Two-dimensional mixed meshes. (English) Zbl 1416.65367 J. Comput. Phys. 375, 1005-1032 (2018). MSC: 65M60 35L65 76M10 76L05 PDF BibTeX XML Cite \textit{H. You} and \textit{C. Kim}, J. Comput. Phys. 375, 1005--1032 (2018; Zbl 1416.65367) Full Text: DOI OpenURL
Gasymov, Elmaga A. Application of finite integral transformation method to the solution of a mixed problem with integral condition of vibration process. (English) Zbl 1412.35011 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 38, No. 4, Math., 63-69 (2018). MSC: 35A22 35L20 35C10 74K05 PDF BibTeX XML Cite \textit{E. A. Gasymov}, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 38, No. 4, Math., 63--69 (2018; Zbl 1412.35011) OpenURL
Ravindran, Sivaguru S. Analysis of a decoupled time-stepping algorithm for reduced MHD system modeling magneto-convection. (English) Zbl 1407.76102 Numer. Methods Partial Differ. Equations 34, No. 6, 1953-1974 (2018). MSC: 76M20 76M10 65M12 65M15 65M06 65M60 35Q35 76W05 76R50 PDF BibTeX XML Cite \textit{S. S. Ravindran}, Numer. Methods Partial Differ. Equations 34, No. 6, 1953--1974 (2018; Zbl 1407.76102) Full Text: DOI OpenURL
Eyral, Christophe; Oka, Mutsuo Whitney regularity and Thom condition for families of non-isolated mixed singularities. (English) Zbl 1407.14044 J. Math. Soc. Japan 70, No. 4, 1305-1336 (2018). Reviewer: Gerhard Pfister (Kaiserslautern) MSC: 14J70 14J17 32S15 32S25 PDF BibTeX XML Cite \textit{C. Eyral} and \textit{M. Oka}, J. Math. Soc. Japan 70, No. 4, 1305--1336 (2018; Zbl 1407.14044) Full Text: DOI arXiv Euclid OpenURL