Barrasso, Adrien; Russo, Francesco Martingale driven BSDEs, PDEs and other related deterministic problems. (English) Zbl 07312689 Stochastic Processes Appl. 133, 193-228 (2021). MSC: 60H30 60H10 35S05 60J35 60J60 60J75 PDF BibTeX XML Cite \textit{A. Barrasso} and \textit{F. Russo}, Stochastic Processes Appl. 133, 193--228 (2021; Zbl 07312689) Full Text: DOI
Shao, Jie; Guo, Boling The Cauchy problem for Schrödinger-damped Boussinesq system. (English) Zbl 07310660 J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021). MSC: 35Q 34 PDF BibTeX XML Cite \textit{J. Shao} and \textit{B. Guo}, J. Math. Anal. Appl. 494, No. 2, Article ID 124639, 21 p. (2021; Zbl 07310660) Full Text: DOI
Chávez, Alan; Pinto, Manuel; Zavaleta, Ulices On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications. (English) Zbl 07309671 J. Math. Anal. Appl. 494, No. 1, Article ID 124395, 38 p. (2021). MSC: 45 35 PDF BibTeX XML Cite \textit{A. Chávez} et al., J. Math. Anal. Appl. 494, No. 1, Article ID 124395, 38 p. (2021; Zbl 07309671) Full Text: DOI
Zhou, Yong; He, Jia Wei Well-posedness and regularity for fractional damped wave equations. (English) Zbl 07308740 Monatsh. Math. 194, No. 2, 425-458 (2021). MSC: 35R11 35L20 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. W. He}, Monatsh. Math. 194, No. 2, 425--458 (2021; Zbl 07308740) Full Text: DOI
Gou, Haide; Li, Yongxiang The method of lower and upper solutions for damped elastic systems in Banach spaces. (English) Zbl 07315130 J. Appl. Anal. Comput. 10, No. 2, 495-513 (2020). MSC: 34G20 34K30 35B10 47D06 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, J. Appl. Anal. Comput. 10, No. 2, 495--513 (2020; Zbl 07315130) Full Text: DOI
Mebrat, M.; N’Guérékata, G. M. A Cauchy problem for some fractional differential equation via deformable derivatives. (English) Zbl 07309258 J. Nonlinear Evol. Equ. Appl. 2020, 55-63 (2020). MSC: 34G20 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{M. Mebrat} and \textit{G. M. N'Guérékata}, J. Nonlinear Evol. Equ. Appl. 2020, 55--63 (2020; Zbl 07309258) Full Text: Link
Ghnimi, Saifeddine Norm continuity and compactness properties for some partial functional integrodifferential equations in Banach spaces. (English) Zbl 07300686 Trans. A. Razmadze Math. Inst. 174, No. 1, 51-59 (2020). MSC: 45 35 PDF BibTeX XML Cite \textit{S. Ghnimi}, Trans. A. Razmadze Math. Inst. 174, No. 1, 51--59 (2020; Zbl 07300686) Full Text: Link
Li, Xiaoyue; Wang, Qi Impulsive functional differential inclusions of mixed type with finite delay. (English) Zbl 07295655 J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 323-333 (2020). MSC: 34K09 34K34 34K45 PDF BibTeX XML Cite \textit{X. Li} and \textit{Q. Wang}, J. Shanghai Norm. Univ., Nat. Sci. 49, No. 3, 323--333 (2020; Zbl 07295655) Full Text: DOI
Chai, Jianhong; Zhou, Wenxue; Sun, Rui; Zhou, Yuqun Existence of mild solution for initial value problem of fractional differential equations. (English) Zbl 07295144 J. Anhui Norm. Univ., Nat. Sci. 43, No. 2, 115-122 (2020). MSC: 34A12 34A08 34G10 PDF BibTeX XML Cite \textit{J. Chai} et al., J. Anhui Norm. Univ., Nat. Sci. 43, No. 2, 115--122 (2020; Zbl 07295144) Full Text: DOI
Gou, Haide Existence of \(L\)-quasi mild solutions for damped elastic systems in Banach spaces. (Chinese. English summary) Zbl 07294869 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 408-421 (2020). MSC: 34G20 34K30 PDF BibTeX XML Cite \textit{H. Gou}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 408--421 (2020; Zbl 07294869)
Li, Qiang; Wei, Mei Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. (English) Zbl 07293771 Evol. Equ. Control Theory 9, No. 3, 753-772 (2020). MSC: 34K30 34K13 34K20 34K40 47H07 47H08 PDF BibTeX XML Cite \textit{Q. Li} and \textit{M. Wei}, Evol. Equ. Control Theory 9, No. 3, 753--772 (2020; Zbl 07293771) Full Text: DOI
Zabsonre, Issa; Mbainadji, Djendode Existence and regularity of solutions in \(\alpha \)-norm for some partial functional integrodifferential equations in Banach spaces. (English) Zbl 07293760 S\(\vec{\text{e}}\)MA J. 77, No. 4, 415-433 (2020). MSC: 34K30 45K05 PDF BibTeX XML Cite \textit{I. Zabsonre} and \textit{D. Mbainadji}, S\(\vec{\text{e}}\)MA J. 77, No. 4, 415--433 (2020; Zbl 07293760) Full Text: DOI
Hamit, Mahamat Hassan Mahamat; Allognissode, Fulbert Kuessi; Mohamed, Mohamed salem; Issaka, Louk-Man; Diop, Mamadou Abdoul Attractiveness and exponential \(p\)-stability of neutral stochastic functional integro-differential equations driven by Wiener process and fBm with impulses effects. (English) Zbl 07274339 Discontin. Nonlinearity Complex. 9, No. 3, 351-366 (2020). MSC: 60 45 PDF BibTeX XML Cite \textit{M. H. M. Hamit} et al., Discontin. Nonlinearity Complex. 9, No. 3, 351--366 (2020; Zbl 07274339) Full Text: DOI
Benaouda, Hedia Structure of solution sets for fractional partial integro-differential equations. (English) Zbl 07272010 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 311-322 (2020). MSC: 35R11 35R09 PDF BibTeX XML Cite \textit{H. Benaouda}, in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 311--322 (2020; Zbl 07272010) Full Text: DOI
Bishop, Sheila A.; Okeke, Godwin A.; Eke, Kanayo Mild solutions of evolution quantum stochastic differential equations with nonlocal conditions. (English) Zbl 07271509 Math. Methods Appl. Sci. 43, No. 10, 6254-6261 (2020). MSC: 47H20 47J25 58D25 60H10 PDF BibTeX XML Cite \textit{S. A. Bishop} et al., Math. Methods Appl. Sci. 43, No. 10, 6254--6261 (2020; Zbl 07271509) Full Text: DOI
Guo, Yingxin; Zhu, Quanxin; Wang, Fei Stability analysis of impulsive stochastic functional differential equations. (English) Zbl 07265052 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105013, 12 p. (2020). Reviewer: Xiaohu Wang (Chengdu) MSC: 34K50 34K20 34K45 PDF BibTeX XML Cite \textit{Y. Guo} et al., Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105013, 12 p. (2020; Zbl 07265052) Full Text: DOI
Gou, Haide; Li, Yongxiang A study on impulsive fractional hybrid evolution equations using sequence method. (English) Zbl 07261292 Comput. Appl. Math. 39, No. 3, Paper No. 225, 31 p. (2020). MSC: 26A33 34K30 34K35 35R11 93B05 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Comput. Appl. Math. 39, No. 3, Paper No. 225, 31 p. (2020; Zbl 07261292) Full Text: DOI
Anguraj, A.; Ravikumar, K.; Ramkumar, K. Existence and exponential stability for stochastic neutral partial functional integrodifferential equations with Poisson jumps. (English) Zbl 07249494 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 5, 269-284 (2020). MSC: 60H10 60H15 60H25 35R60 47B80 35F05 PDF BibTeX XML Cite \textit{A. Anguraj} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 5, 269--284 (2020; Zbl 07249494) Full Text: Link
Kakizawa, Ryôhei Determining nodes for semilinear parabolic evolution equations in Banach spaces. (English) Zbl 1447.35058 Acta Appl. Math. 168, No. 1, 57-74 (2020). MSC: 35B40 35K58 35K90 47D06 PDF BibTeX XML Cite \textit{R. Kakizawa}, Acta Appl. Math. 168, No. 1, 57--74 (2020; Zbl 1447.35058) Full Text: DOI
Debbi, Latifa Fractional stochastic active scalar equations generalizing the multi-dimensional quasi-geostrophic & 2D-Navier-Stokes equations: the general case. (English) Zbl 07246850 J. Math. Fluid Mech. 22, No. 4, Paper No. 54, 52 p. (2020). MSC: 58J65 60H15 35R11 35Q30 PDF BibTeX XML Cite \textit{L. Debbi}, J. Math. Fluid Mech. 22, No. 4, Paper No. 54, 52 p. (2020; Zbl 07246850) Full Text: DOI
Hernández, Eduardo Abstract impulsive differential equations without predefined time impulses. (English) Zbl 1452.34066 J. Math. Anal. Appl. 491, No. 1, Article ID 124288, 19 p. (2020). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G20 34A37 PDF BibTeX XML Cite \textit{E. Hernández}, J. Math. Anal. Appl. 491, No. 1, Article ID 124288, 19 p. (2020; Zbl 1452.34066) Full Text: DOI
Ezzinbi, Khalil; Ghnimi, Saifeddine; Taoudi, Mohamed Aziz New Monch-Krasnosel’skii type fixed point theorems applied to solve neutral partial integrodifferential equations without compactness. (English) Zbl 07240947 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 73, 21 p. (2020). MSC: 45K05 47G20 47D06 47H10 47H08 PDF BibTeX XML Cite \textit{K. Ezzinbi} et al., J. Fixed Point Theory Appl. 22, No. 3, Paper No. 73, 21 p. (2020; Zbl 07240947) Full Text: DOI
Cuevas, Claudio; Silva, Clessius; Soto, Herme On the time-fractional Keller-Segel model for chemotaxis. (English) Zbl 1445.35301 Math. Methods Appl. Sci. 43, No. 2, 769-798 (2020). MSC: 35R11 26A33 35A01 35B40 35K55 92C15 92C17 PDF BibTeX XML Cite \textit{C. Cuevas} et al., Math. Methods Appl. Sci. 43, No. 2, 769--798 (2020; Zbl 1445.35301) Full Text: DOI
Mazzonetto, Sara; Salimova, Diyora Existence, uniqueness, and numerical approximations for stochastic Burgers equations. (English) Zbl 1447.60117 Stochastic Anal. Appl. 38, No. 4, 623-646 (2020). MSC: 60H15 65C30 60H35 35B45 PDF BibTeX XML Cite \textit{S. Mazzonetto} and \textit{D. Salimova}, Stochastic Anal. Appl. 38, No. 4, 623--646 (2020; Zbl 1447.60117) Full Text: DOI
Barrasso, Adrien; Russo, Francesco Decoupled mild solutions of path-dependent PDEs and integro PDEs represented by BSDEs driven by cadlag martingales. (English) Zbl 1453.60114 Potential Anal. 53, No. 2, 449-481 (2020). MSC: 60H15 60G44 60H10 PDF BibTeX XML Cite \textit{A. Barrasso} and \textit{F. Russo}, Potential Anal. 53, No. 2, 449--481 (2020; Zbl 1453.60114) Full Text: DOI
Maekawa, Yasunori; Miura, Hideyuki; Prange, Christophe Estimates for the Navier-Stokes equations in the half-space for nonlocalized data. (English) Zbl 1447.35251 Anal. PDE 13, No. 4, 945-1010 (2020). MSC: 35Q30 35A01 35A02 35B44 35B53 35C99 76D03 76D05 76D07 PDF BibTeX XML Cite \textit{Y. Maekawa} et al., Anal. PDE 13, No. 4, 945--1010 (2020; Zbl 1447.35251) Full Text: DOI
Kpoumiè, Moussa El-Khalil; Nsangou, Abdel Hamid Gamal; Ndambomve, Patrice; Zabsonre, Issa; Mboutngam, Salifou Existence of solutions for some nonautonomous partial functional differential equations with state-dependent delay. (English) Zbl 1447.35343 S\(\vec{\text{e}}\)MA J. 77, No. 2, 107-118 (2020). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 35R10 35K57 PDF BibTeX XML Cite \textit{M. E. K. Kpoumiè} et al., S\(\vec{\text{e}}\)MA J. 77, No. 2, 107--118 (2020; Zbl 1447.35343) Full Text: DOI
Chaudhary, Renu; Pandey, Dwijendra N. Approximation of solutions to stochastic fractional integro-differential equation with deviated argument. (English) Zbl 1445.34112 Differ. Equ. Dyn. Syst. 28, No. 2, 337-356 (2020). MSC: 34K30 34K50 45J99 47N20 34K37 34K07 PDF BibTeX XML Cite \textit{R. Chaudhary} and \textit{D. N. Pandey}, Differ. Equ. Dyn. Syst. 28, No. 2, 337--356 (2020; Zbl 1445.34112) Full Text: DOI
Furukawa, Ken Asymptotic stability of small Oseen-type vortex under three-dimensional large perturbation. (English) Zbl 1440.35009 Analysis, München 40, No. 2, 57-83 (2020). MSC: 35B35 35B40 35Q30 PDF BibTeX XML Cite \textit{K. Furukawa}, Analysis, München 40, No. 2, 57--83 (2020; Zbl 1440.35009) Full Text: DOI
Guo, Congchong; Wang, Qianying; Lu, Ming The well-posedness for the 3D incompressible axisymmetric Navier-Stokes equations in \(BMO^{-2}\). (English) Zbl 1440.35236 Appl. Math. Lett. 102, Article ID 106087, 6 p. (2020). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{C. Guo} et al., Appl. Math. Lett. 102, Article ID 106087, 6 p. (2020; Zbl 1440.35236) Full Text: DOI
Pinaud, Matthieu F.; Henríquez, Hernán R. Controllability of systems with a general nonlocal condition. (English) Zbl 1443.93035 J. Differ. Equations 269, No. 6, 4609-4642 (2020). MSC: 93B05 93C10 93C25 34B10 34G20 PDF BibTeX XML Cite \textit{M. F. Pinaud} and \textit{H. R. Henríquez}, J. Differ. Equations 269, No. 6, 4609--4642 (2020; Zbl 1443.93035) Full Text: DOI
Gou, Haide; Li, Yongxiang Mixed monotone iterative technique for damped elastic systems in Banach spaces. (English) Zbl 1443.34056 J. Pseudo-Differ. Oper. Appl. 11, No. 2, 917-933 (2020). MSC: 34G20 34A45 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, J. Pseudo-Differ. Oper. Appl. 11, No. 2, 917--933 (2020; Zbl 1443.34056) Full Text: DOI
Cluckers, Raf; Pila, Jonathan; Wilkie, Alex Uniform parameterization of subanalytic sets and Diophantine applications. (English) Zbl 07201735 Ann. Sci. Éc. Norm. Supér. (4) 53, No. 1, 1-42 (2020). MSC: 03C64 11D45 11G50 PDF BibTeX XML Cite \textit{R. Cluckers} et al., Ann. Sci. Éc. Norm. Supér. (4) 53, No. 1, 1--42 (2020; Zbl 07201735) Full Text: DOI
Zhai, Jianliang; Zhang, Tusheng 2D stochastic chemotaxis-Navier-Stokes system. (English. French summary) Zbl 1439.60064 J. Math. Pures Appl. (9) 138, 307-355 (2020). MSC: 60H15 35K55 35K20 92C17 PDF BibTeX XML Cite \textit{J. Zhai} and \textit{T. Zhang}, J. Math. Pures Appl. (9) 138, 307--355 (2020; Zbl 1439.60064) Full Text: DOI
Gou, Haide; Li, Yongxiang A study on impulsive Hilfer fractional evolution equations with nonlocal conditions. (English) Zbl 07201334 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 205-218 (2020). MSC: 34 45 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 205--218 (2020; Zbl 07201334) Full Text: DOI
González-Camus, Jorge; Lizama, Carlos Globally attractive mild solutions for non-local in time subdiffusion equations of neutral type. (English) Zbl 1442.34122 Topol. Methods Nonlinear Anal. 55, No. 1, 85-103 (2020). MSC: 34K30 34K40 34K37 35R11 45D05 34K25 PDF BibTeX XML Cite \textit{J. González-Camus} and \textit{C. Lizama}, Topol. Methods Nonlinear Anal. 55, No. 1, 85--103 (2020; Zbl 1442.34122) Full Text: DOI Euclid
Gu, Chuan-Yun; Li, Hong-Xu Piecewise weighted pseudo almost periodicity of impulsive integro-differential equations with fractional order \(1<\alpha<2\). (English) Zbl 1441.34077 Banach J. Math. Anal. 14, No. 2, 487-502 (2020). MSC: 34K14 34K30 34K37 34K45 45K05 47D03 47N20 PDF BibTeX XML Cite \textit{C.-Y. Gu} and \textit{H.-X. Li}, Banach J. Math. Anal. 14, No. 2, 487--502 (2020; Zbl 1441.34077) Full Text: DOI
Alejo, Miguel A.; López, José Luis On global solutions to some non-Markovian quantum kinetic models of Fokker-Planck type. (English) Zbl 1439.35477 Z. Angew. Math. Phys. 71, No. 2, Paper No. 72, 33 p. (2020). MSC: 35Q84 35A01 35A02 35A08 35Q40 35S10 81Q99 35B45 PDF BibTeX XML Cite \textit{M. A. Alejo} and \textit{J. L. López}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 72, 33 p. (2020; Zbl 1439.35477) Full Text: DOI
Gallegos, Claudio A.; Henríquez, Hernán R. Fixed points of multivalued maps under local Lipschitz conditions and applications. (English) Zbl 1444.47059 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 3, 1467-1494 (2020). Reviewer: Ege Özgür (Izmir) MSC: 47H10 47H04 47H08 34A60 34C27 PDF BibTeX XML Cite \textit{C. A. Gallegos} and \textit{H. R. Henríquez}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 3, 1467--1494 (2020; Zbl 1444.47059) Full Text: DOI
Ponce, Rodrigo Mild solutions to integro-differential equations in Banach spaces. (English) Zbl 1447.45010 J. Differ. Equations 269, No. 1, 180-200 (2020). MSC: 45J05 34G10 34K30 45M15 PDF BibTeX XML Cite \textit{R. Ponce}, J. Differ. Equations 269, No. 1, 180--200 (2020; Zbl 1447.45010) Full Text: DOI
Gou, Haide; Li, Yongxiang A study on damped elastic systems in Banach spaces. (English) Zbl 07187976 Numer. Funct. Anal. Optim. 41, No. 5, 542-570 (2020). MSC: 34G20 34B15 47N20 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Numer. Funct. Anal. Optim. 41, No. 5, 542--570 (2020; Zbl 07187976) Full Text: DOI
Tan, Zhong; Wu, Wenpei; Zhou, Jianfeng Existence of mild solutions and regularity criteria of weak solutions to the viscoelastic Navier-Stokes equation with damping. (English) Zbl 1439.35377 Commun. Math. Sci. 18, No. 1, 205-226 (2020). MSC: 35Q30 35Q35 76A10 76B03 76D03 35B40 35B35 35B65 35C06 35D30 PDF BibTeX XML Cite \textit{Z. Tan} et al., Commun. Math. Sci. 18, No. 1, 205--226 (2020; Zbl 1439.35377) Full Text: DOI
Ma, Xiao; Shu, Xiao-Bao; Mao, Jianzhong Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay. (English) Zbl 1442.34125 Stoch. Dyn. 20, No. 1, Article ID 2050003, 31 p. (2020). Reviewer: Syed Abbas (Mandi) MSC: 34K37 34K40 34K30 34K45 34K50 34K14 PDF BibTeX XML Cite \textit{X. Ma} et al., Stoch. Dyn. 20, No. 1, Article ID 2050003, 31 p. (2020; Zbl 1442.34125) Full Text: DOI
Dłotko, Tomasz W.; Wang, Yejuan Critical parabolic-type problems. (English) Zbl 1445.35004 De Gruyter Series in Nonlinear Analysis and Applications 34. Berlin: De Gruyter (ISBN 978-3-11-059755-4/hbk; 978-3-11-059983-1/ebook). xii, 288 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35-02 35K55 35K90 35R11 35B40 35B41 47D06 PDF BibTeX XML Cite \textit{T. W. Dłotko} and \textit{Y. Wang}, Critical parabolic-type problems. Berlin: De Gruyter (2020; Zbl 1445.35004) Full Text: DOI
Qin, Guoquan Existence and large time behavior to the nematic liquid crystal equations in Besov-Morrey spaces. (English) Zbl 1435.35065 J. Math. Anal. Appl. 486, No. 1, Article ID 123884, 20 p. (2020). MSC: 35B40 76A15 35B35 PDF BibTeX XML Cite \textit{G. Qin}, J. Math. Anal. Appl. 486, No. 1, Article ID 123884, 20 p. (2020; Zbl 1435.35065) Full Text: DOI
Manou-Abi, Solym Mawaki; Dimbour, William Asymptotically periodic solution of a stochastic differential equation. (English) Zbl 1440.34061 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 911-939 (2020). MSC: 34F05 34C25 60H30 34D20 60H10 PDF BibTeX XML Cite \textit{S. M. Manou-Abi} and \textit{W. Dimbour}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 911--939 (2020; Zbl 1440.34061) Full Text: DOI
Hernández, Eduardo; Wu, Jianhong; Fernandes, Denis Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay. (English) Zbl 1448.34140 Appl. Math. Optim. 81, No. 1, 89-111 (2020). Reviewer: Yong-Kui Chang (Xi’an) MSC: 34K30 34K40 47D06 34K43 PDF BibTeX XML Cite \textit{E. Hernández} et al., Appl. Math. Optim. 81, No. 1, 89--111 (2020; Zbl 1448.34140) Full Text: DOI
Ferreira, Lucas C. F.; Pérez-López, Jhean E. Bilinear estimates and uniqueness for Navier-Stokes equations in critical Besov-type spaces. (English) Zbl 1434.35051 Ann. Mat. Pura Appl. (4) 199, No. 1, 379-400 (2020). MSC: 35Q30 35A02 76D03 76D05 35C15 42B35 PDF BibTeX XML Cite \textit{L. C. F. Ferreira} and \textit{J. E. Pérez-López}, Ann. Mat. Pura Appl. (4) 199, No. 1, 379--400 (2020; Zbl 1434.35051) Full Text: DOI
Issoglio, Elena; Jing, Shuai Forward-backward SDEs with distributional coefficients. (English) Zbl 1443.60062 Stochastic Processes Appl. 130, No. 1, 47-78 (2020). MSC: 60H10 35K55 60H30 35K10 PDF BibTeX XML Cite \textit{E. Issoglio} and \textit{S. Jing}, Stochastic Processes Appl. 130, No. 1, 47--78 (2020; Zbl 1443.60062) Full Text: DOI arXiv
Wang, Chao; Agarwal, Ravi P. Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations. (English) Zbl 1431.34100 Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 781-798 (2020). MSC: 34N05 43A60 26E70 PDF BibTeX XML Cite \textit{C. Wang} and \textit{R. P. Agarwal}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 781--798 (2020; Zbl 1431.34100) Full Text: DOI
Cornalba, Federico; Shardlow, Tony; Zimmer, Johannes From weakly interacting particles to a regularised Dean-Kawasaki model. (English) Zbl 1439.60059 Nonlinearity 33, No. 2, 864-891 (2020). MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{F. Cornalba} et al., Nonlinearity 33, No. 2, 864--891 (2020; Zbl 1439.60059) Full Text: DOI arXiv
Nirmalkumar, R.; Murugesu, R. Approximate controllability results for neutral stochastic differential equations of Sobolev type with unbounded delay in Hilbert spaces. (English) Zbl 07284851 J. Indian Math. Soc., New Ser. 86, No. 1-2, 79-94 (2019). MSC: 65C30 34K40 34K50 PDF BibTeX XML Cite \textit{R. Nirmalkumar} and \textit{R. Murugesu}, J. Indian Math. Soc., New Ser. 86, No. 1--2, 79--94 (2019; Zbl 07284851) Full Text: DOI
Yao, Qi; Wang, Linshan; Wang, Yangfan Periodic solutions to impulsive stochastic reaction-diffusion neural networks with delays. (English) Zbl 07264493 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104865, 11 p. (2019). MSC: 34A37 34K20 35B10 90B15 PDF BibTeX XML Cite \textit{Q. Yao} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104865, 11 p. (2019; Zbl 07264493) Full Text: DOI
Xu, Jiaohui; Zhang, Zhengce; Caraballo, Tomás Well-posedness and dynamics of impulsive fractional stochastic evolution equations with unbounded delay. (English) Zbl 07264427 Commun. Nonlinear Sci. Numer. Simul. 75, 121-139 (2019). MSC: 34G 43A 26A PDF BibTeX XML Cite \textit{J. Xu} et al., Commun. Nonlinear Sci. Numer. Simul. 75, 121--139 (2019; Zbl 07264427) Full Text: DOI
Xu, Liyang; Shen, Tianlong; Yang, Xuejun; Liang, Jiarui Analysis of time fractional and space nonlocal stochastic incompressible Navier-Stokes equation driven by white noise. (English) Zbl 1442.60069 Comput. Math. Appl. 78, No. 5, 1669-1680 (2019). MSC: 60H15 35R11 35Q30 35R60 76D06 PDF BibTeX XML Cite \textit{L. Xu} et al., Comput. Math. Appl. 78, No. 5, 1669--1680 (2019; Zbl 1442.60069) Full Text: DOI
He, Jia Wei; Peng, Li Approximate controllability for a class of fractional stochastic wave equations. (English) Zbl 1442.93007 Comput. Math. Appl. 78, No. 5, 1463-1476 (2019). MSC: 93B05 93E03 35R11 35R60 60H15 PDF BibTeX XML Cite \textit{J. W. He} and \textit{L. Peng}, Comput. Math. Appl. 78, No. 5, 1463--1476 (2019; Zbl 1442.93007) Full Text: DOI
Zhang, Qin; Deng, Xuemei; Bie, Qunyi Existence and uniqueness of mild solutions to the incompressible nematic liquid crystal flow. (English) Zbl 1442.82040 Comput. Math. Appl. 77, No. 9, 2489-2498 (2019). MSC: 82D30 35B35 35C06 35Q35 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Comput. Math. Appl. 77, No. 9, 2489--2498 (2019; Zbl 1442.82040) Full Text: DOI
Meng, Fei Existence and uniqueness of mild solutions for Boltzmann equation under different potentials. (Chinese. English summary) Zbl 1449.35339 J. Anhui Norm. Univ., Nat. Sci. 42, No. 6, 520-526 (2019). MSC: 35Q20 PDF BibTeX XML Cite \textit{F. Meng}, J. Anhui Norm. Univ., Nat. Sci. 42, No. 6, 520--526 (2019; Zbl 1449.35339) Full Text: DOI
Cernea, Aurelian Differentiability properties of solutions of a second-order evolution inclusion. (English) Zbl 1443.34057 Area, Iván (ed.) et al., Nonlinear analysis and boundary value problems. NABVP 2018, Santiago de Compostela, Spain, September 4–7, 2018. Proceedings of the international conference. Dedicated to Juan J. Nieto on the occasion of his 60th birthday. Cham: Springer. Springer Proc. Math. Stat. 292, 19-28 (2019). MSC: 34G25 34A12 49J53 PDF BibTeX XML Cite \textit{A. Cernea}, Springer Proc. Math. Stat. 292, 19--28 (2019; Zbl 1443.34057) Full Text: DOI
Shu, Linxin; Shu, Xiao-Bao; Mao, Jianzhong Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1 < \alpha < 2\). (English) Zbl 1441.93038 Fract. Calc. Appl. Anal. 22, No. 4, 1086-1112 (2019). MSC: 93B05 93E03 93C15 60H10 26A33 PDF BibTeX XML Cite \textit{L. Shu} et al., Fract. Calc. Appl. Anal. 22, No. 4, 1086--1112 (2019; Zbl 1441.93038) Full Text: DOI
Cannarsa, Piermarco; Capuani, Rossana; Cardaliaguet, Pierre C\(^{1,1}\)-smoothness of constrained solutions in the calculus of variations with application to mean field games. (English) Zbl 1433.49002 Math. Eng. (Springfield) 1, No. 1, 174-203 (2019). Reviewer: George Stoica (Saint John) MSC: 49J15 49J30 49J53 49N80 35F21 49N90 PDF BibTeX XML Cite \textit{P. Cannarsa} et al., Math. Eng. (Springfield) 1, No. 1, 174--203 (2019; Zbl 1433.49002) Full Text: DOI
Nirmalkumar, R.; Murugesu, R. Approximate controllability of second-order neutral stochastic non-autonomous integrodifferential inclusions by resolvent operators. (English) Zbl 1440.93036 Discontin. Nonlinearity Complex. 8, No. 3, 247-259 (2019). MSC: 93B05 93C15 93C25 93E03 60H30 PDF BibTeX XML Cite \textit{R. Nirmalkumar} and \textit{R. Murugesu}, Discontin. Nonlinearity Complex. 8, No. 3, 247--259 (2019; Zbl 1440.93036) Full Text: DOI
Xiao, Meixia; Zhang, Xianwen Mild solutions for the relativistic Vlasov-Klein-Gordon system. (English) Zbl 1434.35235 Bull. Korean Math. Soc. 56, No. 6, 1447-1465 (2019). MSC: 35Q83 35J05 82C40 33C10 83A05 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{M. Xiao} and \textit{X. Zhang}, Bull. Korean Math. Soc. 56, No. 6, 1447--1465 (2019; Zbl 1434.35235) Full Text: DOI
Jawahdou, Adel Existence of mild solutions of second order evolution integro-differential equations in the Fréchet spaces. (English) Zbl 1449.34266 J. Math. Model. 7, No. 3, 305-318 (2019). MSC: 34K30 45J05 47N20 PDF BibTeX XML Cite \textit{A. Jawahdou}, J. Math. Model. 7, No. 3, 305--318 (2019; Zbl 1449.34266) Full Text: DOI
Carvalho dos Santos, José Paulo Fractional resolvent operator with \(\alpha \in (0,1)\) and applications. (English) Zbl 07159422 Fract. Differ. Calc. 9, No. 2, 187-208 (2019). MSC: 34A08 34K30 35R11 45N05 PDF BibTeX XML Cite \textit{J. P. Carvalho dos Santos}, Fract. Differ. Calc. 9, No. 2, 187--208 (2019; Zbl 07159422) Full Text: DOI
Kostić, Marko The existence and uniqueness of almost periodic and asymptotically almost periodic solutions of semilinear Cauchy inclusions. (English) Zbl 1435.34062 Funct. Anal. Approx. Comput. 11, No. 2, 23-37 (2019). Reviewer: Garik Petrosyan (Voronezh) MSC: 34G25 47D03 47D06 34C27 PDF BibTeX XML Cite \textit{M. Kostić}, Funct. Anal. Approx. Comput. 11, No. 2, 23--37 (2019; Zbl 1435.34062) Full Text: Link
Shi, Wei; Fan, Hongxia Asymptotic periodic solutions for second-order evolution equation. (English) Zbl 1449.35029 J. Qufu Norm. Univ., Nat. Sci. 45, No. 3, 7-14 (2019). MSC: 35B10 35L90 PDF BibTeX XML Cite \textit{W. Shi} and \textit{H. Fan}, J. Qufu Norm. Univ., Nat. Sci. 45, No. 3, 7--14 (2019; Zbl 1449.35029) Full Text: DOI
Ramkumar, K.; Mohamed, M. S.; Diop, Mamadou Abdoul Almost sure exponential stability for some neutral partial integro-differential equations. (English) Zbl 1449.34267 J. Numer. Math. Stoch. 11, No. 1, 19-42 (2019). MSC: 34K30 34K40 60H15 93E15 34K50 45K05 34K20 PDF BibTeX XML Cite \textit{K. Ramkumar} et al., J. Numer. Math. Stoch. 11, No. 1, 19--42 (2019; Zbl 1449.34267) Full Text: Link
Lakhel, El Hassan; Tlidi, Abdelmonaim Existence, uniqueness and stability of impulsive stochastic neutral functional differential equations driven by Rosenblatt process with varying-time delays. (English) Zbl 1439.60062 Random Oper. Stoch. Equ. 27, No. 4, 213-223 (2019). MSC: 60H15 60G18 60G22 60H20 PDF BibTeX XML Cite \textit{E. H. Lakhel} and \textit{A. Tlidi}, Random Oper. Stoch. Equ. 27, No. 4, 213--223 (2019; Zbl 1439.60062) Full Text: DOI
Blouhi, T.; Caraballo, T.; Ouahab, A. Topological method for coupled systems of impulsive stochastic semilinear differential inclusions with fractional Brownian motion. (English) Zbl 1430.34074 Fixed Point Theory 20, No. 1, 71-106 (2019). MSC: 34K09 47H10 34K30 34K45 PDF BibTeX XML Cite \textit{T. Blouhi} et al., Fixed Point Theory 20, No. 1, 71--106 (2019; Zbl 1430.34074) Full Text: DOI
Vivek, Devaraj; Baghani, Omid; Kanagarajan, Kuppusamy Theory of hybrid fractional differential equations with complex order. (English) Zbl 1449.34033 Sahand Commun. Math. Anal. 15, No. 1, 65-76 (2019). MSC: 34A08 26A33 34A38 34A12 34G20 PDF BibTeX XML Cite \textit{D. Vivek} et al., Sahand Commun. Math. Anal. 15, No. 1, 65--76 (2019; Zbl 1449.34033) Full Text: DOI
Durga, N.; Muthukumar, P. Optimal control of fractional neutral stochastic differential equations with deviated argument governed by Poisson jumps and infinite delay. (English) Zbl 1425.93300 Optim. Control Appl. Methods 40, No. 5, 880-899 (2019). MSC: 93E20 60H10 93C15 26A33 PDF BibTeX XML Cite \textit{N. Durga} and \textit{P. Muthukumar}, Optim. Control Appl. Methods 40, No. 5, 880--899 (2019; Zbl 1425.93300) Full Text: DOI
Ding, Xiao-Li; Daniel, Cao-Labora; Nieto, Juan J. A new generalized Gronwall inequality with a double singularity and its applications to fractional stochastic differential equations. (English) Zbl 07123596 Stochastic Anal. Appl. 37, No. 6, 1042-1056 (2019). MSC: 45 34 35 PDF BibTeX XML Cite \textit{X.-L. Ding} et al., Stochastic Anal. Appl. 37, No. 6, 1042--1056 (2019; Zbl 07123596) Full Text: DOI
Xu, Pengfei; Huang, Jianhua; Zou, Guangan Well-posedness of time-space fractional stochastic evolution equations driven by \(\alpha\)-stable noise. (English) Zbl 1431.35188 Math. Methods Appl. Sci. 42, No. 11, 3818-3830 (2019). MSC: 35Q56 37L55 60H15 35R11 35R60 35Q30 35B65 33E12 47H10 65N06 PDF BibTeX XML Cite \textit{P. Xu} et al., Math. Methods Appl. Sci. 42, No. 11, 3818--3830 (2019; Zbl 1431.35188) Full Text: DOI
Baaske, Franka; Schmeißer, Hans-Jürgen On the existence and uniqueness of mild and strong solutions of a generalized nonlinear heat equation. (English) Zbl 1423.35154 Z. Anal. Anwend. 38, No. 3, 287-308 (2019). MSC: 35K25 35K55 46E35 35Q35 PDF BibTeX XML Cite \textit{F. Baaske} and \textit{H.-J. Schmeißer}, Z. Anal. Anwend. 38, No. 3, 287--308 (2019; Zbl 1423.35154) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families. (English) Zbl 1423.35425 J. Fixed Point Theory Appl. 21, No. 3, Paper No. 84, 17 p. (2019). MSC: 35R12 65J08 35K90 PDF BibTeX XML Cite \textit{P. Chen} et al., J. Fixed Point Theory Appl. 21, No. 3, Paper No. 84, 17 p. (2019; Zbl 1423.35425) Full Text: DOI
Li, Xiuwen; Li, Yunxiang; Liu, Zhenhai; Li, Jing Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. (English) Zbl 1429.49031 Fract. Calc. Appl. Anal. 21, No. 6, 1439-1470 (2019). Reviewer: Tullio Zolezzi (Genova) MSC: 49K40 26A33 35R11 49K20 49K27 PDF BibTeX XML Cite \textit{X. Li} et al., Fract. Calc. Appl. Anal. 21, No. 6, 1439--1470 (2019; Zbl 1429.49031) Full Text: DOI
Ren, Lulu; Wang, JinRong; Fečkan, Michal Asymptotically periodic solutions for Caputo type fractional evolution equations. (English) Zbl 1426.34020 Fract. Calc. Appl. Anal. 21, No. 5, 1294-1312 (2019). MSC: 34A08 34G10 34G20 34C25 PDF BibTeX XML Cite \textit{L. Ren} et al., Fract. Calc. Appl. Anal. 21, No. 5, 1294--1312 (2019; Zbl 1426.34020) Full Text: DOI
Gou, Haide; Li, Baolin Existence results for Hilfer fractional evolution equations with boundary conditions. (English) Zbl 1429.34077 J. Pseudo-Differ. Oper. Appl. 10, No. 3, 711-746 (2019). MSC: 34K37 34K30 47D06 34K10 47N20 34K32 PDF BibTeX XML Cite \textit{H. Gou} and \textit{B. Li}, J. Pseudo-Differ. Oper. Appl. 10, No. 3, 711--746 (2019; Zbl 1429.34077) Full Text: DOI
Chen, Pengyu; Zhang, Xuping; Li, Yongxiang Non-autonomous evolution equations of parabolic type with non-instantaneous impulses. (English) Zbl 07110763 Mediterr. J. Math. 16, No. 5, Paper No. 118, 14 p. (2019). MSC: 34K45 35R12 65J08 PDF BibTeX XML Cite \textit{P. Chen} et al., Mediterr. J. Math. 16, No. 5, Paper No. 118, 14 p. (2019; Zbl 07110763) Full Text: DOI
Yang, Min; Wang, Qiru Pseudo asymptotically periodic solutions for fractional integro-differential neutral equations. (English) Zbl 1425.34088 Sci. China, Math. 62, No. 9, 1705-1718 (2019). MSC: 34K37 34K40 34K13 34K30 45J99 PDF BibTeX XML Cite \textit{M. Yang} and \textit{Q. Wang}, Sci. China, Math. 62, No. 9, 1705--1718 (2019; Zbl 1425.34088) Full Text: DOI arXiv
Yan, Zuomao; Jia, Xiumei Existence of optimal mild solutions and controllability of fractional impulsive stochastic partial integro-differential equations with infinite delay. (English) Zbl 1422.93020 Asian J. Control 21, No. 2, 725-748 (2019). MSC: 93B05 93C20 60H15 35R09 35R11 93C25 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{X. Jia}, Asian J. Control 21, No. 2, 725--748 (2019; Zbl 1422.93020) Full Text: DOI
Shomberg, Joseph L. Well-posedness of semilinear strongly damped wave equations with fractional diffusion operators and \(C^0\) potentials on arbitrary bounded domains. (English) Zbl 1437.35503 Rocky Mt. J. Math. 49, No. 4, 1307-1334 (2019). MSC: 35L71 35L20 35R11 35Q74 74H40 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Rocky Mt. J. Math. 49, No. 4, 1307--1334 (2019; Zbl 1437.35503) Full Text: DOI Euclid
Wang, Yejuan; Liang, Tongtong Mild solutions to the time fractional Navier-Stokes delay differential inclusions. (English) Zbl 1423.35420 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3713-3740 (2019). MSC: 35R11 33E12 34K37 35Q30 35B65 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{T. Liang}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 3713--3740 (2019; Zbl 1423.35420) Full Text: DOI
Kyelem, Bila Adolphe; Ouedraogo, Arouna; Zongo, Frédéric D. Y. Existence and uniqueness of entropy solutions to nonlinear parabolic problem with homogeneous Dirichlet boundary conditions involving variable exponent. (English) Zbl 1420.35123 S\(\vec{\text{e}}\)MA J. 76, No. 1, 153-180 (2019). MSC: 35K55 35D30 46E35 76D03 PDF BibTeX XML Cite \textit{B. A. Kyelem} et al., S\(\vec{\text{e}}\)MA J. 76, No. 1, 153--180 (2019; Zbl 1420.35123) Full Text: DOI
Yang, Jiaqi Remarks on global well-posedness of mild solutions to the three-dimensional Boussinesq equations. (English) Zbl 07096811 J. Math. Anal. Appl. 478, No. 2, 1020-1026 (2019). MSC: 35Q35 35A01 35A02 76D05 PDF BibTeX XML Cite \textit{J. Yang}, J. Math. Anal. Appl. 478, No. 2, 1020--1026 (2019; Zbl 07096811) Full Text: DOI
Ambrose, David M.; Mazzucato, Anna L. Global existence and analyticity for the 2D Kuramoto-Sivashinsky equation. (English) Zbl 1418.35214 J. Dyn. Differ. Equations 31, No. 3, 1525-1547 (2019). MSC: 35K25 35K58 35B65 35B10 PDF BibTeX XML Cite \textit{D. M. Ambrose} and \textit{A. L. Mazzucato}, J. Dyn. Differ. Equations 31, No. 3, 1525--1547 (2019; Zbl 1418.35214) Full Text: DOI arXiv
Keyantuo, Valentin; Lizama, Carlos; Rueda, Silvia; Warma, Mahamadi Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type. (English) Zbl 07078727 Adv. Difference Equ. 2019, Paper No. 251, 29 p. (2019). MSC: 39A14 45D05 35B40 47D06 PDF BibTeX XML Cite \textit{V. Keyantuo} et al., Adv. Difference Equ. 2019, Paper No. 251, 29 p. (2019; Zbl 07078727) Full Text: DOI
Wang, Xiaoming; Arif, Muhammad; Zada, Akbar \(\beta\)-Hyers-Ulam-Rassias stability of semilinear nonautonomous impulsive system. (English) Zbl 1416.34013 Symmetry 11, No. 2, Paper No. 231, 18 p. (2019). MSC: 34A37 34D20 PDF BibTeX XML Cite \textit{X. Wang} et al., Symmetry 11, No. 2, Paper No. 231, 18 p. (2019; Zbl 1416.34013) Full Text: DOI
Allognissode, Fulbert Kuessi; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Ogouyandjou, Carlos Stochastic partial functional integrodifferential equations driven by a sub-fractional Brownian motion, existence and asymptotic behavior. (English) Zbl 1447.60088 Random Oper. Stoch. Equ. 27, No. 2, 107-122 (2019). MSC: 60H15 60G15 60G22 45K05 35R09 35R10 PDF BibTeX XML Cite \textit{F. K. Allognissode} et al., Random Oper. Stoch. Equ. 27, No. 2, 107--122 (2019; Zbl 1447.60088) Full Text: DOI
Liu, Xianghu; Wang, JinRong; O’Regan, D. On the approximate controllability for fractional evolution inclusions of Sobolev and Clarke subdifferential type. (English) Zbl 1417.93074 IMA J. Math. Control Inf. 36, No. 1, 1-17 (2019). MSC: 93B05 93C15 26A33 93C05 93C10 PDF BibTeX XML Cite \textit{X. Liu} et al., IMA J. Math. Control Inf. 36, No. 1, 1--17 (2019; Zbl 1417.93074) Full Text: DOI
Singh, Vikram; Pandey, Dwijendra N. PC-mild solutions to Sobolev-type fractional differential equations with non-instantaneous impulses. (English) Zbl 1421.34052 Mediterr. J. Math. 16, No. 4, Paper No. 86, 20 p. (2019). MSC: 34K37 34K30 34K32 34K45 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Mediterr. J. Math. 16, No. 4, Paper No. 86, 20 p. (2019; Zbl 1421.34052) Full Text: DOI
Wang, Yuzhao; Xiao, Jie Well/ill-posedness for the dissipative Navier-Stokes system in generalized Carleson measure spaces. (English) Zbl 1421.35256 Adv. Nonlinear Anal. 8, 203-224 (2019). MSC: 35Q30 42B37 76D05 35R25 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{J. Xiao}, Adv. Nonlinear Anal. 8, 203--224 (2019; Zbl 1421.35256) Full Text: DOI
Yan, Zuomao; Han, Li Optimal mild solutions for a class of nonlocal multi-valued stochastic delay differential equations. (English) Zbl 1416.34063 J. Optim. Theory Appl. 181, No. 3, 1053-1075 (2019). MSC: 34K50 34K30 34A45 34K09 47N20 60H15 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{L. Han}, J. Optim. Theory Appl. 181, No. 3, 1053--1075 (2019; Zbl 1416.34063) Full Text: DOI
Gou, Haide; Li, Baolin Study a class of nonlinear fractional non-autonomous evolution equations with delay. (English) Zbl 1416.34055 J. Pseudo-Differ. Oper. Appl. 10, No. 1, 155-176 (2019). MSC: 34K30 47D06 37C60 PDF BibTeX XML Cite \textit{H. Gou} and \textit{B. Li}, J. Pseudo-Differ. Oper. Appl. 10, No. 1, 155--176 (2019; Zbl 1416.34055) Full Text: DOI
Gou, Haide; Li, Yongxiang Existence of solutions for damped elastic systems in Banach spaces. (English) Zbl 07057007 Adv. Difference Equ. 2019, Paper No. 189, 15 p. (2019). MSC: 26A33 34K37 34A08 34A37 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Adv. Difference Equ. 2019, Paper No. 189, 15 p. (2019; Zbl 07057007) Full Text: DOI
Baltas, Ioannis; Xepapadeas, Anastasios; Yannacopoulos, Athanasios N. Robust control of parabolic stochastic partial differential equations under model uncertainty. (English) Zbl 1412.93026 Eur. J. Control 46, 1-13 (2019). MSC: 93B35 93E20 93C20 60H15 91A15 91A23 93C25 PDF BibTeX XML Cite \textit{I. Baltas} et al., Eur. J. Control 46, 1--13 (2019; Zbl 1412.93026) Full Text: DOI
Mastrogiacomo, E. Infinite horizon stochastic optimal control for Volterra equations with completely monotone kernels. (English) Zbl 07056419 J. Math. Anal. Appl. 472, No. 1, 61-93 (2019). MSC: 60 35 PDF BibTeX XML Cite \textit{E. Mastrogiacomo}, J. Math. Anal. Appl. 472, No. 1, 61--93 (2019; Zbl 07056419) Full Text: DOI
Liang, Jiarui; Shen, Tianlong; Qian, Xu; Song, Songhe Time fractional and space nonlocal stochastic nonlinear Schrödinger equation driven by Gaussian white noise. (English) Zbl 1416.35242 Stochastic Anal. Appl. 37, No. 2, 123-136 (2019). MSC: 35Q55 60H15 35R11 35B65 35Q82 33E12 35R60 PDF BibTeX XML Cite \textit{J. Liang} et al., Stochastic Anal. Appl. 37, No. 2, 123--136 (2019; Zbl 1416.35242) Full Text: DOI
Conus, Daniel; Jentzen, Arnulf; Kurniawan, Ryan Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients. (English) Zbl 07047435 Ann. Appl. Probab. 29, No. 2, 653-716 (2019). MSC: 65C30 60H35 35R60 60H15 PDF BibTeX XML Cite \textit{D. Conus} et al., Ann. Appl. Probab. 29, No. 2, 653--716 (2019; Zbl 07047435) Full Text: DOI Euclid arXiv