×

A new method for the generation of arbitrarily shaped 3D random polycrystalline domains. (English) Zbl 1309.74058

Summary: In this paper a new method for the generation and meshing of arbitrarily shaped three-dimensional polycrystalline models is presented. The discretization is based on Voronoi tessellation, which is shown to be statistically representative of the microstructure of polycrystalline materials. An original approach is introduced to define any possible (concave or convex) shape of the final domain, independently from the initial configuration of the aggregate. Firstly the Voronoi cells are cropped along arbitrarily oriented planes to generate a convex domain, and then an arbitrary number of cuts are performed along planar surfaces to generate the final concave domain. Finally the grains are discretised separately and assembled together to create a finite element model. Several examples are presented to show the capability of generated virtual samples to simulate the behaviour of real polycrystalline materials. The macroscopic elastic properties of polycrystals consisting of anisotropic (trigonal) grains and the stress intensity factor at the tip of a sharp notch are evaluated and compared both with analytical calculations and experimental evidences, showing excellent agreement.

MSC:

74N15 Analysis of microstructure in solids
05C90 Applications of graph theory
74S05 Finite element methods applied to problems in solid mechanics

Software:

geom3d; Neper; Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Burke S, Cousland S, Scala C (1994) Nondestructive characterization of advanced composite materials. Met Forum 18:85-109
[2] King R, Delaney P (1994) Confocal microscopy. Met Forum 18:21-29
[3] Marrow TJ, Briggs GAD, Roberts SG (1994) In-situ scanning acoustic microscopy of crack bridging in alumina. J Eur Ceram Soc 14:111-116 · doi:10.1016/0955-2219(94)90098-1
[4] Wilkinson AJ, Hirsch PB (1997) Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28(4):279-308 · doi:10.1016/S0968-4328(97)00032-2
[5] Bhandari Y, Sarkar S, Groeber M, Uchic MD, Dimiduk DM, Ghosh S (2007) 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comput Mater Sci 41(2):222-235 · doi:10.1016/j.commatsci.2007.04.007
[6] Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Charact 57(4-5):259-273 · doi:10.1016/j.matchar.2006.01.019
[7] Groeber M (2008) A framework for automated analysis and simulation of 3d polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Mater 56(6):1274-1287 · doi:10.1016/j.actamat.2007.11.040
[8] Groeber M (2008) A framework for automated analysis and simulation of 3d polycrystalline microstructures. Part 1: Statistical characterization. Acta Mater 56(6):1257-1273 · doi:10.1016/j.actamat.2007.11.041
[9] Baczmanski A, Wierzbanowski K, Lipinski P, Helmholdt RB, Ekambaranathan G, Pathiraj B (1994) Examination of the residual stress field in plastically deformed polycrystalline material. Philos Mag A 69(3):437-449 · doi:10.1080/01418619408242223
[10] Ortiz M, Suresh S (1993) Statistical properties of residual stresses and intergranular fracture in ceramic materials. J Appl Mech 60:77-84 · doi:10.1115/1.2900782
[11] Sukumar N, Srolovitz DJ, Baker TJ, Prevost JH (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Methods Eng 56(14):2015-2037 · Zbl 1038.74652 · doi:10.1002/nme.653
[12] Kumar S, Kurtz SK (1994) Simulation of material microstructure using a 3d voronoi tessellation: calculation of effective thermal expansion coefficient of polycrystalline materials. Acta Met Mater 42(12):3917-3927 · doi:10.1016/0956-7151(94)90170-8
[13] Kumar S, Kurtz SK, Agarwala V (1996) Micro-stress distribution within polycrystalline aggregate. Acta Mech 114:203-216 · Zbl 0857.73068 · doi:10.1007/BF01170404
[14] Ghosh S, Lee K, Moorthy S (1994) Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. Int J Solids Struct 32(1):27-62 · Zbl 0865.73060 · doi:10.1016/0020-7683(94)00097-G
[15] Wu MS, Niu J (1995) A theoretical analysis of crack nucleation due to grain boundary dislocation pile-ups in a random ice microstructure. Philos Mag A 71(4):831-854 · doi:10.1080/01418619508236223
[16] Wu MS, He MD (1999) Prediction of crack statistics in a random polycrystal damaged by the pile-ups of extrinsic grain-boundary dislocations. Philos Mag A 79(2):271-292 · doi:10.1080/01418619908210297
[17] Raabe D, Zhao Z, Mao W (2002) On the dependence of in-grain subdivision and deformation texture of aluminium on grain interaction. Acta Mater 50:4379-4394 · doi:10.1016/S1359-6454(02)00276-8
[18] Zhao Z, Kuchnicki S, Radovitzky R, Cuitino A (2007) Influence of in-grain mesh resolution on the prediction of deformation textures in FCC polycrystals by crystal plasticity FEM. Acta Mater 55(7):2361-2373 · doi:10.1016/j.actamat.2006.11.035
[19] Jivkov AP, Marrow TJ (2007) Rates of intergranular environment assisted cracking in three-dimensional model microstructures. Theor Appl Fract Mech 48(3):187-202 · Zbl 1228.74093
[20] Wakai F, Enomoto N, Ogawa H (2000) Three dimensional microstructural evolution in ideal grain growth—general statistics. Acta Mater 48:1297-1311
[21] Aurenhammer F (1991) Voronoi diagrams—a survey of fundamental geometric data structure. ACM Comput Surv 23(3):345-405 · doi:10.1145/116873.116880
[22] Barbe F, Decker L, Jeulin D, Cailletaud G (2001) Intergranular and intragranular behaviour of polycrystalline aggregates. Part 1: FE model. Int J Plast 17:513-536 · Zbl 1067.74011 · doi:10.1016/S0749-6419(00)00061-9
[23] Barbe F, Decker L, Jeulin D, Cailletaud G (2001) Intergranular and intragranular behaviour of polycrystalline aggregates. Part 2: Results. Int J Plast 17:537-563 · Zbl 1067.74012 · doi:10.1016/S0749-6419(00)00062-0
[24] Fritzen F, Böhlke T, Schnack E (2008) Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Comput Mech 43(5):701-713 · doi:10.1007/s00466-008-0339-2
[25] Fritzen F, Böhlke T (2011) Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. Int J Solids Struct 48(5):706-718 · Zbl 1236.74058 · doi:10.1016/j.ijsolstr.2010.11.010
[26] Quey R, Dawson P, Barbe F (2011) Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200(17):1729-1745 · Zbl 1228.74093 · doi:10.1016/j.cma.2011.01.002
[27] Qian J, Zhang Y, Wang W, Lewis AC, Qidwai M, Geltmacher AB (2010) Quality improvement of non-manifold hexahedral meshes for critical feature determination of microstructure materials. Int J Numer Methods Eng 82(11):1406-1423 · Zbl 1188.74094
[28] Yoon S, Akatsu T, Yasuda E (1997) Anisotropy of creep deformation rate in hot-pressed \[Si_33N_44\] with preferred orientation of the elongated grains. J Mater Sci 32(14):3813-3819 · doi:10.1023/A:1018631924934
[29] Liu Q, Juul Jensen D, Hansen N (1998) Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater 46(16):5819-5838 · doi:10.1016/S1359-6454(98)00229-8
[30] Ramella M, Boschin W, Fadda D, Nonino M (2001) Finding galaxy clusters using Voronoi tessellations. Astron Astrophys 368(3):776-786 · doi:10.1051/0004-6361:20010071
[31] Poupon A (2004) Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr Opin Struct Biol 14(2):233-241 · doi:10.1016/j.sbi.2004.03.010
[32] Boots B (1982) The arrangment of cells in random network. Metallography 15:53-62 · doi:10.1016/0026-0800(82)90041-6
[33] Du Q, Faber V, Gunzburger M (1999) Centroidal voronoi tessellations: applications and algorithms. SIAM Rev 41(4):637-676 · Zbl 0983.65021 · doi:10.1137/S0036144599352836
[34] Ohser J, Schladitz K (2009) 3D images of materials structures: processing and analysis. Wiley, New York · Zbl 1165.94306 · doi:10.1002/9783527628308
[35] Dobrich K, Rau M, Krill III C (2004) Quantitative characterization of the three-dimensional microstructure of polycrystalline Al-Sn using X-ray microtomography. Metall Mater Trans A 35(7):1953-1961 · doi:10.1007/s11661-004-0144-2
[36] Rowenhorst DJ, Lewis AC, Spanos G (2010) Three-dimensional analysis of grain topology and interface curvature in a \[\beta\] β-titanium alloy. Acta Mater 58(16):5511-5519
[37] Legland D (2009) Graphics library geom3d · Zbl 1062.74629
[38] Fritzen F, Böhlke T (2011) Nonuniform transformation field analysis of materials with morphological anisotropy. Compos Sci Technol 71(4):433-442 · doi:10.1016/j.compscitech.2010.12.013
[39] Geuzaine C, Remacle J-F (2009) Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309-1331 · Zbl 1176.74181 · doi:10.1002/nme.2579
[40] Vodenitcharova T, Zhang LC, Zarudi I, Yin Y, Domyo H, Ho T, Sato M (2007) The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks. J Mater Process Technol 194(1-3):52-62 · doi:10.1016/j.jmatprotec.2007.03.125
[41] Nye J (1957) Physical properties of crystals: their representation by tensor and matrices. Clarendon Press, Oxford · Zbl 0079.22601
[42] Gladden JR, So JH, Maynard JD, Saxe PW, Le Page Y (2004) Reconciliation of ab initio theory and experimental elastic properties of \[Al_22O_33\]. Appl Phys Lett 85(3):392 · doi:10.1063/1.1773924
[43] Hovis DB, Reddy A, Heuer AH (2006) X-ray elastic constants for \[\alpha\] α-\[Al_22O_33\]. Appl Phys Lett 88(13):131910 · doi:10.1063/1.2189071
[44] Winey JM, Gupta YM, Hare DE (2001) r-axis sound speed and elastic properties of sapphire single crystals. J Appl Phys 90(6):3109 · doi:10.1063/1.1391420
[45] Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112-132 · doi:10.1016/j.probengmech.2005.07.007
[46] Benedetti I, Aliabadi MH (2013) A three-dimensional grain boundary formulation for microstructural modeling of polycrystalline materials. Comput Mater Sci 67:249-260 · doi:10.1016/j.commatsci.2012.08.006
[47] Ren ZY, Zheng QS (2004) Effects of grain sizes, shapes, and distribution on minimum sizes of representative volume elements of cubic polycrystals. Mech Mater 36(12):1217-1229 · doi:10.1016/j.mechmat.2003.11.002
[48] Nygards M (2003) Number of grains necessary to homogenize elastic materials with cubic symmetry. Mech Mater 35(11):1049-1057 · doi:10.1016/S0167-6636(02)00325-3
[49] Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago · Zbl 0032.22202
[50] Chung DH, Simmons G (1968) Pressure and temperature dependences of the isotropic elastic moduli of polycrystalline alumina. J Appl Phys 39(11):5316-5326 · doi:10.1063/1.1655961
[51] Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13-14):3647-3679 · Zbl 1038.74605 · doi:10.1016/S0020-7683(03)00143-4
[52] Lemaitre J, Chaboche J (1990) Mechanics of soilid materials. Cambridge University Press, Cambridge · Zbl 0743.73002 · doi:10.1017/CBO9781139167970
[53] Gross B, Mendelson A (1972) Plane elastostatic analysis of v-notched plates. Int J Fract Mech 8(3):267-276 · doi:10.1007/BF00186126
[54] Tabiei A, Wu J (2002) Development od the DYNA3D simulation code with automated fracture procedure for brick elements. Int J Numer Methods Eng 57:1979-2006 · Zbl 1062.74629 · doi:10.1002/nme.742
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.