×

Load transfer from broken fibers in continuous fiber Al\(_2\)O\(_3\)-Al composites and dependence on local volume fraction. (English) Zbl 0969.74526


MSC:

74E30 Composite and mixture properties
74M25 Micromechanics of solids
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bader, M.G., Clyne, T.W., Cappelman, G.., Hubert, P. A., 1985. The fabrication and properties of metal-matrix composites based on aluminium alloy infiltrated alumina fiber preforms. Compos. Sci. Tech. 23, 287-301.; Bader, M.G., Clyne, T.W., Cappelman, G.., Hubert, P. A., 1985. The fabrication and properties of metal-matrix composites based on aluminium alloy infiltrated alumina fiber preforms. Compos. Sci. Tech. 23, 287-301.
[2] Beyerlein, I.J., Phoenix, S.L., 1996. Stress concentrations round multiple fiber breaks in an elastic matrix with local yielding or debonding using quadratic influence superposition. Journal of the Mechanics and Physics of Solids 44, 1997-2039.; Beyerlein, I.J., Phoenix, S.L., 1996. Stress concentrations round multiple fiber breaks in an elastic matrix with local yielding or debonding using quadratic influence superposition. Journal of the Mechanics and Physics of Solids 44, 1997-2039.
[3] Beyerlein, I.J., Phoenix, S.L., 1997. Stress profiles and energy release rates around fiber breaks in a lamina with propagating zones of matrix yielding and debonding. Comp. Sci. Tech. 57, 869-885.; Beyerlein, I.J., Phoenix, S.L., 1997. Stress profiles and energy release rates around fiber breaks in a lamina with propagating zones of matrix yielding and debonding. Comp. Sci. Tech. 57, 869-885.
[4] Beyerlein, I.J., Phoenix, S.L., Sastry, A.M., 1996. Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and the matrix stresses in an elastic cracked composite lamina. International Journal of Solids and Structures 33, 2543-2574.; Beyerlein, I.J., Phoenix, S.L., Sastry, A.M., 1996. Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and the matrix stresses in an elastic cracked composite lamina. International Journal of Solids and Structures 33, 2543-2574. · Zbl 0909.73063
[5] Budiansky, B., Hutchinson, J.W., Evans, A.G., 1986. Matrix fracture in fiber-reinforced ceramics. Journal of the Mechanics and Physics of Solids 34, 167-189.; Budiansky, B., Hutchinson, J.W., Evans, A.G., 1986. Matrix fracture in fiber-reinforced ceramics. Journal of the Mechanics and Physics of Solids 34, 167-189. · Zbl 0575.73106
[6] Chawla, K.K., Metzger, M., 1972. Initial dislocation distributions in tungsten fibre-copper composites. J. Mat. Sci. 7, 34-39.; Chawla, K.K., Metzger, M., 1972. Initial dislocation distributions in tungsten fibre-copper composites. J. Mat. Sci. 7, 34-39.
[7] Chohan, V., Galiotis, C., 1996. Interfacial measurements and fracture characteristics of 2-D microcomposites using remote laser Raman microscopy. Compos. 27A, 881-888.; Chohan, V., Galiotis, C., 1996. Interfacial measurements and fracture characteristics of 2-D microcomposites using remote laser Raman microscopy. Compos. 27A, 881-888.
[8] Christman, T., Suresh, S., 1987. Brown University Report No. NSF-ENG-8451092.; Christman, T., Suresh, S., 1987. Brown University Report No. NSF-ENG-8451092.
[9] Courtney, T.H., 1990. Mechanical Behavior of Materials. McGraw-Hill, New York, p. 171.; Courtney, T.H., 1990. Mechanical Behavior of Materials. McGraw-Hill, New York, p. 171.
[10] Curtin, W.A., 1991. Theory of mechanical properties of ceramic-matrix composites. Journal of the American Ceramic Society 74, 2837-2845.; Curtin, W.A., 1991. Theory of mechanical properties of ceramic-matrix composites. Journal of the American Ceramic Society 74, 2837-2845.
[11] Curtin, W.A., 1994. Strength vs Gauge length in ceramic-matrix composites. Journal of the American Ceramic Society 77, 1072-1074.; Curtin, W.A., 1994. Strength vs Gauge length in ceramic-matrix composites. Journal of the American Ceramic Society 77, 1072-1074.
[12] Deve, H.E., McCullough, C., 1995. Continuous-fiber reinforced Al composites : a new generation. JOM 47, 33-37.; Deve, H.E., McCullough, C., 1995. Continuous-fiber reinforced Al composites : a new generation. JOM 47, 33-37.
[13] Du, Z.Z., McMeeking, R M., 1993. Control of strength anisotropy of metal matrix fiber composites. Journal of Computer Aided Materials Design 1, 243-265.; Du, Z.Z., McMeeking, R M., 1993. Control of strength anisotropy of metal matrix fiber composites. Journal of Computer Aided Materials Design 1, 243-265.
[14] Fan, C.F., Hsu, S.L., 1992. A study of stress distribution in model composites by using finite-element analysis I. End effects. J. Polym. Sci. B30, 603-618.; Fan, C.F., Hsu, S.L., 1992. A study of stress distribution in model composites by using finite-element analysis I. End effects. J. Polym. Sci. B30, 603-618.
[15] Fukuda, H., Kawata, K., 1976. On the stress concentration factor in fiberous composites. Fiber Sci. Tech. 9, 189-203.; Fukuda, H., Kawata, K., 1976. On the stress concentration factor in fiberous composites. Fiber Sci. Tech. 9, 189-203.
[16] Goree, J.G., Gross, R.S., 1980a. Stresses in a three-dimensional unidirectional composite containing broken fibers. Engineering Fracture Mechanics 13, 395-405.; Goree, J.G., Gross, R.S., 1980a. Stresses in a three-dimensional unidirectional composite containing broken fibers. Engineering Fracture Mechanics 13, 395-405.
[17] Goree, J.G., Gross, R.S., 1980b. Analysis of a unidirectional composite containing broken fibers and matrix damage. Engineering Fracture Mechanics 13, 563-578.; Goree, J.G., Gross, R.S., 1980b. Analysis of a unidirectional composite containing broken fibers and matrix damage. Engineering Fracture Mechanics 13, 563-578.
[18] Gulino, R., Schwartz, P., Phoenix, S.L., 1991. Experiments on shear deformation debonding and local load transfer in a model graphite/glass/epoxy composite. J. Mat. Sci. 26, 6655-6672.; Gulino, R., Schwartz, P., Phoenix, S.L., 1991. Experiments on shear deformation debonding and local load transfer in a model graphite/glass/epoxy composite. J. Mat. Sci. 26, 6655-6672.
[19] Harlow, D.G., Phoenix, S.L., 1981. Probability distributions for the strength of composite materials II : a convergent sequence of tight bounds. International Journal of Fracture 17, 601-630.; Harlow, D.G., Phoenix, S.L., 1981. Probability distributions for the strength of composite materials II : a convergent sequence of tight bounds. International Journal of Fracture 17, 601-630.
[20] He, J., 1996. Ph.D. thesis, University of California, Santa Barbara.; He, J., 1996. Ph.D. thesis, University of California, Santa Barbara.
[21] He, J., Clarke, D.R., 1995. Determination of the piezospectroscopic coefficients for chromium-doped sapphire. Journal of the American Ceramic Society 78, 1347-1353.; He, J., Clarke, D.R., 1995. Determination of the piezospectroscopic coefficients for chromium-doped sapphire. Journal of the American Ceramic Society 78, 1347-1353.
[22] He, J., Clarke, D.R., 1997a. Fundamentals and applications of piezospectroscopy using \(Cr^3_2_3\); He, J., Clarke, D.R., 1997a. Fundamentals and applications of piezospectroscopy using \(Cr^3_2_3\)
[23] He, J., Clarke, D.R., 1997b. Determination of fiber strength distributions from bundle tests using optical luminescence spectroscopy. Proceedings of the Royal Society of London A, in press.; He, J., Clarke, D.R., 1997b. Determination of fiber strength distributions from bundle tests using optical luminescence spectroscopy. Proceedings of the Royal Society of London A, in press.
[24] He, M.Y., Evans, A.G., Curtin, W A., 1993. The ultimate tensile strength of metal and ceramic-matrix composites. Acta Metallurgica et Materialia 41, 871-878.; He, M.Y., Evans, A.G., Curtin, W A., 1993. The ultimate tensile strength of metal and ceramic-matrix composites. Acta Metallurgica et Materialia 41, 871-878.
[25] Hedgepeth, J.M., 1961. Stress concentration in filamentary structures. NASA TN D-822.; Hedgepeth, J.M., 1961. Stress concentration in filamentary structures. NASA TN D-822.
[26] Hedgepeth, J.M., Van Dyke, P., 1967. Local stress concentration in imperfect filamentary composite materials. J. Compos. Mater. 1, 294-309.; Hedgepeth, J.M., Van Dyke, P., 1967. Local stress concentration in imperfect filamentary composite materials. J. Compos. Mater. 1, 294-309.
[27] Henstenburg, R.B., Phoenix, S.L., 1989. Interfacial shear strength studies using the single-filament-composite test. Polym. Compos. 10, 389-408.; Henstenburg, R.B., Phoenix, S.L., 1989. Interfacial shear strength studies using the single-filament-composite test. Polym. Compos. 10, 389-408.
[28] Hu, M.S., Yang, J., Chao, H.C., Evans, A.G., Mehrabian, R., 1992. The mechanical properties of Al alloys reinforced with continuous fibers. Acta Metallurgica et Materialia 40, 2315-2326.; Hu, M.S., Yang, J., Chao, H.C., Evans, A.G., Mehrabian, R., 1992. The mechanical properties of Al alloys reinforced with continuous fibers. Acta Metallurgica et Materialia 40, 2315-2326.
[29] Ibnabdeljalil, M., Phoenix, S.L., 1995. Scalings in the statistical failure of brittle matrix composites with discontinuous fibers : analysis and Monte Carlo simulations. Acta Metallurgica et Materialia 43, 2975-2983.; Ibnabdeljalil, M., Phoenix, S.L., 1995. Scalings in the statistical failure of brittle matrix composites with discontinuous fibers : analysis and Monte Carlo simulations. Acta Metallurgica et Materialia 43, 2975-2983. · Zbl 0877.73050
[30] Kelly, A., Lilholt, H., 1969. Stress-strain curve of a fiber-reinforced composite. Philosophical Magazine 20, 311-38.; Kelly, A., Lilholt, H., 1969. Stress-strain curve of a fiber-reinforced composite. Philosophical Magazine 20, 311-38.
[31] Kriese, M.D., Hoehn, J.W., Deve, H.E., McCullough, C., Gerberich, W.W., 1977. Role of matrix properties on the toughness and notch-strength of aluminum-alumina fiber composites, in press.; Kriese, M.D., Hoehn, J.W., Deve, H.E., McCullough, C., Gerberich, W.W., 1977. Role of matrix properties on the toughness and notch-strength of aluminum-alumina fiber composites, in press.
[32] Lipkin, D.M., Clarke, D.R., 1996. Measurement of the stress in oxide scales formed by oxidation of alumina-formed alloy. Oxid. Met. 45, 267-280.; Lipkin, D.M., Clarke, D.R., 1996. Measurement of the stress in oxide scales formed by oxidation of alumina-formed alloy. Oxid. Met. 45, 267-280.
[33] Ma, Q., Clarke, D.R., 1993. Stress measurement in single-crystal and polycrystalline ceramics using their optical fluorescence. Journal of the American Ceramic Society 76, 1433-1440.; Ma, Q., Clarke, D.R., 1993. Stress measurement in single-crystal and polycrystalline ceramics using their optical fluorescence. Journal of the American Ceramic Society 76, 1433-1440.
[34] Ma, Q., Shaw, M.C., He, M.Y., Dalgleish, B.J., Clarke, D.R., Evans, A.G., 1995. Stress redistribution in ceramic/metal multilayers containing cracks. Acta Metallurgica et Materialia 40, 2137-2142.; Ma, Q., Shaw, M.C., He, M.Y., Dalgleish, B.J., Clarke, D.R., Evans, A.G., 1995. Stress redistribution in ceramic/metal multilayers containing cracks. Acta Metallurgica et Materialia 40, 2137-2142.
[35] McCullough, C., Deve, H.E., Channel, T.E., 1994. Mechanical response of continuous fiberreinforced \(Al_2_3\); McCullough, C., Deve, H.E., Channel, T.E., 1994. Mechanical response of continuous fiberreinforced \(Al_2_3\)
[36] Nairn, J.A., 1988. Fracture mechanics of unidirectional composites using the shear-lag model I : theory. J. Comp. Mat. 22, 561-588.; Nairn, J.A., 1988. Fracture mechanics of unidirectional composites using the shear-lag model I : theory. J. Comp. Mat. 22, 561-588.
[37] Ochiai, S., Schulte, K., Peters, P.W.M., 1991. Strain concentration factors for fibers and matrix in unidirectional composites. Comp. Sci. Technol. 41, 237-256.; Ochiai, S., Schulte, K., Peters, P.W.M., 1991. Strain concentration factors for fibers and matrix in unidirectional composites. Comp. Sci. Technol. 41, 237-256.
[38] Partridge, P.G., Ward-Close, C.M., 1993. Processing of advanced continuous fiber composites : current practice and potential developments. Int. Mater. Rev. 38, 1-24.; Partridge, P.G., Ward-Close, C.M., 1993. Processing of advanced continuous fiber composites : current practice and potential developments. Int. Mater. Rev. 38, 1-24.
[39] Phoenix, S.L., Raj, R., 1992. Scalings in fracture probabilities for a brittle matrix fiber composite. Acta Metallurgica et Materialia 40, 2813-2828.; Phoenix, S.L., Raj, R., 1992. Scalings in fracture probabilities for a brittle matrix fiber composite. Acta Metallurgica et Materialia 40, 2813-2828.
[40] Phoenix, S.L., Smith, R.L., 1983. A comparison of probabilistic technique or the strength of fibrous materials under local load sharing among fibers. International Journal of Solids and Structures 18, 193-215.; Phoenix, S.L., Smith, R.L., 1983. A comparison of probabilistic technique or the strength of fibrous materials under local load sharing among fibers. International Journal of Solids and Structures 18, 193-215. · Zbl 0532.73069
[41] Ragan, D.D., Clarke, D.R., Schiferl, D., 1966. Silicone fluid as a high-pressure medium in diamond anvil cells. Rev. Sci. Instrum. 67, 494-496.; Ragan, D.D., Clarke, D.R., Schiferl, D., 1966. Silicone fluid as a high-pressure medium in diamond anvil cells. Rev. Sci. Instrum. 67, 494-496.
[42] Reedy, E.D., 1980. Analysis of center notched monolayers with application to Boron/Al composites. Journal of the Mechanics and Physics of Solids 28, 265-286.; Reedy, E.D., 1980. Analysis of center notched monolayers with application to Boron/Al composites. Journal of the Mechanics and Physics of Solids 28, 265-286. · Zbl 0458.73060
[43] Rossettos, J.N., Shishesaz, M., 1987. Stress concentration in fiber composite sheets including matrix extension. Journal of Applied Mechanics 54, 723-724.; Rossettos, J.N., Shishesaz, M., 1987. Stress concentration in fiber composite sheets including matrix extension. Journal of Applied Mechanics 54, 723-724.
[44] Schalder, L.S., Amer, M.S., Iskandarani, B., 1966. Experimental measurements of fiber/fiber interaction using micro-raman spectroscopy. Mech. Mater. 23, 205-216.; Schalder, L.S., Amer, M.S., Iskandarani, B., 1966. Experimental measurements of fiber/fiber interaction using micro-raman spectroscopy. Mech. Mater. 23, 205-216.
[45] Schueller, R.D., Wawner, F.E., 1991. Effects of microstructure on optimum heat treatment conditions in metal-matrix composites. J. Mater. Sci. 26, 3287-3291.; Schueller, R.D., Wawner, F.E., 1991. Effects of microstructure on optimum heat treatment conditions in metal-matrix composites. J. Mater. Sci. 26, 3287-3291.
[46] Sergo, V., Clarke, D.R., Pompe, W., 1995. Deformation bands in ceria-stabilized tetragonal zirconia/alumina : I. Measurement of the internal stresses. Journal of the American Ceramic Society 78, 641-644.; Sergo, V., Clarke, D.R., Pompe, W., 1995. Deformation bands in ceria-stabilized tetragonal zirconia/alumina : I. Measurement of the internal stresses. Journal of the American Ceramic Society 78, 641-644.
[47] Sih, G.C., 1973. Handbook of Stress-Intensity Factors : Stress-Intensity Factor Solutions and Formulas for Reference. Lehigh University, Institute of Fracture and Solid Mechanics, Bethlehem, PA.; Sih, G.C., 1973. Handbook of Stress-Intensity Factors : Stress-Intensity Factor Solutions and Formulas for Reference. Lehigh University, Institute of Fracture and Solid Mechanics, Bethlehem, PA.
[48] Tripathi, D., Chen, F., Jones, F.R., 1996. The effect of matrix plasticity on the stress fields in a single filament composite and the value of interfacial shear strength obtained from the fragmentation test. Proceedings of the Royal Society of London A, pp. 621-653.; Tripathi, D., Chen, F., Jones, F.R., 1996. The effect of matrix plasticity on the stress fields in a single filament composite and the value of interfacial shear strength obtained from the fragmentation test. Proceedings of the Royal Society of London A, pp. 621-653.
[49] Van den Heuvel, P.W.J., Van der Bruggen, Y.J.W., Peijs, T., 1966. Failure phenomena in multi-fibre model composites. 1. An experimental investigation into the influence of fibre spacing and fibre-matrix adhesion. Compos. 27A, 855-859.; Van den Heuvel, P.W.J., Van der Bruggen, Y.J.W., Peijs, T., 1966. Failure phenomena in multi-fibre model composites. 1. An experimental investigation into the influence of fibre spacing and fibre-matrix adhesion. Compos. 27A, 855-859.
[50] Van Dyke, P., Hedgepeth, J.M., 1969. Stress concentrations from single-filament failures in composite materials. Textile Res. J. 39, 618-626.; Van Dyke, P., Hedgepeth, J.M., 1969. Stress concentrations from single-filament failures in composite materials. Textile Res. J. 39, 618-626.
[51] Vogelsang, M., Arsenault, R.J., Fisher, R.M., 1986. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites. Metallurgical Transactions A 17, 379-389.; Vogelsang, M., Arsenault, R.J., Fisher, R.M., 1986. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites. Metallurgical Transactions A 17, 379-389.
[52] Yang, J. Y., 1997. Private correspondence.; Yang, J. Y., 1997. Private correspondence.
[53] Zeng, Q.D., Wang, Z.L., Ling, L., 1997. A study of the interfacial damage on stress concentration in unidirectional composites. J. Compos. Mater. 57, 129-135.; Zeng, Q.D., Wang, Z.L., Ling, L., 1997. A study of the interfacial damage on stress concentration in unidirectional composites. J. Compos. Mater. 57, 129-135.
[54] Zweben, C., 1974. An approximate method of analysis for notched unidirectional composites. Engineering Fracture Mechanics 6, 1-10.; Zweben, C., 1974. An approximate method of analysis for notched unidirectional composites. Engineering Fracture Mechanics 6, 1-10.
[55] Not Available; Not Available
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.