×

Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. (English) Zbl 1217.74099

Summary: Establishing structure-property relationships for nanoparticle/polymer composites is a fundamental task for a reliable design of such new systems. A micromechanical analytical model is proposed in the present work, in order to address the problem of stiffness and yield stress prediction in the case of nanocomposites consisting of silica nanoparticles embedded in a polymer matrix. It takes into account an interphase corresponding to a perturbed region of the polymer matrix around the nanoparticles. Its modulus is continuously graded from that of the silica nanoparticle to that of the polymer matrix. Considering the thickness of the third phase as a characteristic length scale, the influence of particle size on the overall nanocomposite behaviour is examined. The key role of the interphase on both the overall stiffness and yield stress is studied and the model output is compared to experimental data of various silica spherical nanoparticle/polymer composites extracted from the literature. The model is also used to examine the influence of interphase features on the overall nanocomposite behaviour. A finite element analysis is then achieved and the numerical results are validated using the analytical predictions. Local stress and strain distributions are analysed in order to understand the phenomena occurring at the nano-scale.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
74M25 Micromechanics of solids
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbate, M.; Musto, P.; Ragosta, G.; Scarinzi, G.; Mascia, L.: Polyimide – silica hybrids: spectroscopy, morphology and mechanical properties, Macromol. symp. 218, 211-220 (2004)
[2] Avella, M.; Bondioli, F.; Cannillo, V.; Errico, M. E.; Ferrari, A. M.; Focher, B.; Malinconico, M.; Manfredini, T.; Montorsi, M.: Preparation, characterisation and computational study of \(poly(\&z.epsiv;-caprolactone)\) based nanocomposites, Mater. sci. Technol. 20, 1340-1344 (2004)
[3] Avella, M.; Bondioli, F.; Cannillo, V.; Cosco, S.; Errico, M. E.; Ferrari, A. M.; Focher, B.; Malinconico, M.: Properties/structure relationships in innovative PCL – sio2 nanocomposites, Macromol. symp. 218, 201-210 (2004)
[4] Berriot, J.; Lequeux, F.; Monnerie, L.; Montes, H.; Long, D.; Sotta, P.: Filler-elastomer interaction in model filled rubbers, a 1H NMR study, J. non-crystall. Solids, 719-724 (2002)
[5] Berriot, J.; Martin, F.; Montes, H.; Monnerie, L.; Sotta, P.: Reinforcement of model filled elastomers: characterization of the cross-linking density at the filler – elastomer interface by 1H NMR measurements, Polymer 44, 1437-1447 (2003)
[6] Bondioli, F.; Cannillo, V.; Fabbri, E.; Messori, M.: Epoxy – silica nanocomposites: preparation, experimental characterization, and modeling, J. appl. Polym. sci. 97, 2382-2386 (2005)
[7] Cannillo, V.; Bondioli, F.; Lusvarghi, L.; Montorsi, M.; Avella, M.; Errico, M. E.; Malinconico, M.: Modeling of ceramic particles filled polymer – matrix nanocomposites, Compos. sci. Technol. 66, 1030-1037 (2006)
[8] Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. lond. A 241, 376-396 (1957) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[9] Garcia, M.; Van Vliet, G.; Cate, M. G. J. Ten; Chavez, F.; Norder, B.; Kooi, B.; Van Zyl, W. E.; Verweij, H.; Blank, D. H. A.: Large-scale extrusion processing and characterization of hybrid nylon-6/sio2 nanocomposites, Polym. adv. Technol. 15, 164-172 (2004)
[10] Halpin, J. C.; Kardos, J. L.: The halpin – tsai equations: a review, Polym. eng. Sci. 16, 344-352 (1976)
[11] Hori, M.; Nemat-Nasser, S.: Double-inclusion model and overall moduli of multi-phase composites, Mech. mater. 14, 189-206 (1993)
[12] Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A.; Jasiuk, I.: Experimental trends in polymer nanocomposites – a review, Mater. sci. Eng. A 393, 1-11 (2005)
[13] Ju, J. W.; Chen, T. M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities, Acta mech. 103, 103-121 (1994) · Zbl 0811.73045 · doi:10.1007/BF01180221
[14] Ju, J. W.; Sun, L. Z.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities, part I: Micromechanics-based formulation, Int. J. Solids struct. 38, 183-201 (2001) · Zbl 1085.74038 · doi:10.1016/S0020-7683(00)00026-3
[15] Kontou, E.; Anthoulis, G.: The effect of silica nanoparticles on the thermomechanical properties of polystyrene, J. appl. Polym. sci. 105, 1723-1731 (2007)
[16] Liu, H. T.; Sun, L. Z.: Multi-scale modeling of elastoplastic deformation and strengthening mechanisms in aluminum-based amorphous nanocomposites, Acta mater. 53, 2693-2701 (2005)
[17] Mori, T.; Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metall. 21, 571-574 (1973)
[18] Odegard, G. M.; Clancy, T. C.; Gates, T. S.: Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer 46, 553-562 (2005)
[19] Ou, Y.; Yang, F.; Yu, Z. Z.: A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization, J. polym. Sci. B: polym. Phys. 36, 789-795 (1998)
[20] Reynaud, E.; Jouen, T.; Gauthier, C.; Vigier, G.; Varlet, J.: Nanofillers in polymeric matrix: a study on silica reinforced PA6, Polymer 42, 8759-8768 (2001)
[21] Rong, M. Z.; Zhang, M. Q.; Zheng, Y. X.; Zeng, H. M.; Friedrich, K.: Improvement of tensile properties of nano-sio2/PP composites in relation to percolation mechanism, Polymer 42, 3301-3304 (2001)
[22] Saber-Samandari, S.; Afaghi-Khatibi, A.: Evaluation of elastic modulus of polymer matrix nanocomposites, Polym. compos. 28, 405-411 (2007)
[23] Shen, L.; Du, Q.; Wang, H.; Zhong, W.; Yang, Y.: In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water Glass, Polym. int. 53, 1153-1160 (2004)
[24] Smith, J. S.; Bedrov, D.; Smith, G. D.: A molecular dynamics simulation study of nanoparticle interactions in a model polymer – nanoparticle composite, Compos. sci. Technol. 63, 1599-1605 (2003)
[25] Tvergaard, V.: On localization in ductile materials containing spherical voids, Int. J. Fract. 18, 237-252 (1982)
[26] Voros, G.; Pukanszky, B.: Prediction of the yield stress of composites containing particles with an interlayer of changing properties, Composites A 33, 1317-1322 (2002)
[27] Wang, H.; Bai, Y.; Liu, S.; Wu, J.; Wong, C. P.: Combined effects of silica filler and its interface in epoxy resin, Acta mater. 50, 4369-4377 (2002)
[28] Wang, Z. D.; Lu, J. J.; Li, Y.; Fu, S. Y.; Jiang, S. Q.; Zhao, X. X.: Studies on thermal and mechanical properties of PI/sio2 nanocomposite films at low temperature, Composites A 37, 74-79 (2006)
[29] Wetzel, B.; Haupert, F.; Zhang, M. Q.: Epoxy nanocomposites with high mechanical and tribological performance, Compos. sci. Technol. 63, 2055-2067 (2003)
[30] Wu, C. L.; Zhang, M. Q.; Rong, M. Z.; Friedrich, K.: Tensile performance improvement of low nanoparticles filled-polypropylene composites, Compos. sci. Technol. 62, 1327-1340 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.