Abels, Helmut; Kampmann, Johannes Existence of weak solutions for a sharp interface model for phase separation on biological membranes. (English) Zbl 07314561 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 331-351 (2021). MSC: 35R35 35K93 92C37 PDF BibTeX XML Cite \textit{H. Abels} and \textit{J. Kampmann}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 331--351 (2021; Zbl 07314561) Full Text: DOI
Chen, Hao; Weber, Matthias An orthorhombic deformation family of Schwarz’ H surfaces. (English) Zbl 07313205 Trans. Am. Math. Soc. 374, No. 3, 2057-2078 (2021). MSC: 53A10 PDF BibTeX XML Cite \textit{H. Chen} and \textit{M. Weber}, Trans. Am. Math. Soc. 374, No. 3, 2057--2078 (2021; Zbl 07313205) Full Text: DOI
Lima, Vanderson; Menezes, Ana A two-piece property for free boundary minimal surfaces in the ball. (English) Zbl 07313193 Trans. Am. Math. Soc. 374, No. 3, 1661-1686 (2021). MSC: 53A10 53C42 49Q15 49Q05 PDF BibTeX XML Cite \textit{V. Lima} and \textit{A. Menezes}, Trans. Am. Math. Soc. 374, No. 3, 1661--1686 (2021; Zbl 07313193) Full Text: DOI
Cheng, Qing-Ming; Wei, Guoxin Complete \(\lambda\)-surfaces in \(\mathbb{R}^3\). (English) Zbl 07313180 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 46, 20 p. (2021). MSC: 53A05 53E10 PDF BibTeX XML Cite \textit{Q.-M. Cheng} and \textit{G. Wei}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 46, 20 p. (2021; Zbl 07313180) Full Text: DOI
Omari, Pierpaolo; Sovrano, Elisa Positive solutions of superlinear indefinite prescribed mean curvature problems. (English) Zbl 07312332 Commun. Contemp. Math. 23, No. 3, Article ID 2050017, 25 p. (2021). MSC: 35J62 35J93 35B09 35J25 PDF BibTeX XML Cite \textit{P. Omari} and \textit{E. Sovrano}, Commun. Contemp. Math. 23, No. 3, Article ID 2050017, 25 p. (2021; Zbl 07312332) Full Text: DOI
Fairag, Faisal; Chen, Ke; Ahmad, Shahbaz Analysis of the CCFD method for MC-based image denoising problems. (English) Zbl 07311976 ETNA, Electron. Trans. Numer. Anal. 54, 108-127 (2021). MSC: 68U10 94A08 65N06 65N12 PDF BibTeX XML Cite \textit{F. Fairag} et al., ETNA, Electron. Trans. Numer. Anal. 54, 108--127 (2021; Zbl 07311976) Full Text: DOI Link
Andrews, Ben; Wei, Yong Volume preserving flow by powers of the \(k\)-th mean curvature. (English) Zbl 07311277 J. Differ. Geom. 117, No. 2, 193-222 (2021). MSC: 53E10 53A07 PDF BibTeX XML Cite \textit{B. Andrews} and \textit{Y. Wei}, J. Differ. Geom. 117, No. 2, 193--222 (2021; Zbl 07311277) Full Text: DOI Euclid
Rosales, César Stable and isoperimetric regions in some weighted manifolds with boundary. (English) Zbl 07310971 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112217, 25 p. (2021). MSC: 49Q20 53A10 PDF BibTeX XML Cite \textit{C. Rosales}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112217, 25 p. (2021; Zbl 07310971) Full Text: DOI
Gao, Laiyuan; Pan, Shengliang; Tsai, Dong-Ho On an area-preserving inverse curvature flow of convex closed plane curves. (English) Zbl 07310592 J. Funct. Anal. 280, No. 8, Article ID 108931, 32 p. (2021). MSC: 53E10 35B40 35K15 35K55 PDF BibTeX XML Cite \textit{L. Gao} et al., J. Funct. Anal. 280, No. 8, Article ID 108931, 32 p. (2021; Zbl 07310592) Full Text: DOI
Akamine, Shintaro; Fujino, Hiroki Reflection principle for lightlike line segments on maximal surfaces. (English) Zbl 07310542 Ann. Global Anal. Geom. 59, No. 1, 93-108 (2021). MSC: 53A10 53B30 31A05 31A20 PDF BibTeX XML Cite \textit{S. Akamine} and \textit{H. Fujino}, Ann. Global Anal. Geom. 59, No. 1, 93--108 (2021; Zbl 07310542) Full Text: DOI
Bueno, Antonio Properly embedded surfaces with prescribed mean curvature in \(\mathbb{H}^2 \times \mathbb{R}\). (English) Zbl 07310540 Ann. Global Anal. Geom. 59, No. 1, 69-80 (2021). MSC: 53A10 PDF BibTeX XML Cite \textit{A. Bueno}, Ann. Global Anal. Geom. 59, No. 1, 69--80 (2021; Zbl 07310540) Full Text: DOI
Ball, Gavin; Madnick, Jesse The mean curvature of first-order submanifolds in exceptional geometries with torsion. (English) Zbl 07310539 Ann. Global Anal. Geom. 59, No. 1, 27-67 (2021). MSC: 53 58 PDF BibTeX XML Cite \textit{G. Ball} and \textit{J. Madnick}, Ann. Global Anal. Geom. 59, No. 1, 27--67 (2021; Zbl 07310539) Full Text: DOI
Chen, Hao; Traizet, Martin Stacking disorder in periodic minimal surfaces. (English) Zbl 07309970 SIAM J. Math. Anal. 53, No. 1, 855-887 (2021). MSC: 53A10 PDF BibTeX XML Cite \textit{H. Chen} and \textit{M. Traizet}, SIAM J. Math. Anal. 53, No. 1, 855--887 (2021; Zbl 07309970) Full Text: DOI
Xu, Zhiyuan; Xu, Hongwei A gap theorem for complete submanifolds with parallel mean curvature in the hyperbolic space. (English) Zbl 07309680 J. Math. Anal. Appl. 494, No. 1, Article ID 124549, 13 p. (2021). MSC: 53C42 PDF BibTeX XML Cite \textit{Z. Xu} and \textit{H. Xu}, J. Math. Anal. Appl. 494, No. 1, Article ID 124549, 13 p. (2021; Zbl 07309680) Full Text: DOI
Stuvard, Salvatore; Tonegawa, Yoshihiro An existence theorem for Brakke flow with fixed boundary conditions. (English) Zbl 07309253 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 43, 53 p. (2021). MSC: 53E10 49Q20 49Q05 PDF BibTeX XML Cite \textit{S. Stuvard} and \textit{Y. Tonegawa}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 43, 53 p. (2021; Zbl 07309253) Full Text: DOI
Bryan, Paul; Ivaki, Mohammad N.; Scheuer, Julian Orlicz-Minkowski flows. (English) Zbl 07309251 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 41, 25 p. (2021). MSC: 53E10 35K55 52A05 53A15 58J35 PDF BibTeX XML Cite \textit{P. Bryan} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 41, 25 p. (2021; Zbl 07309251) Full Text: DOI
Lynch, Stephen; Nguyen, Huy The Pinched ancient solutions to the high codimension mean curvature flow. (English) Zbl 07309173 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 29, 14 p. (2021). MSC: 53E10 PDF BibTeX XML Cite \textit{S. Lynch} and \textit{H. T. Nguyen}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 29, 14 p. (2021; Zbl 07309173) Full Text: DOI
Takahashi, Ryosuke Collapsing of the line bundle mean curvature flow on Kähler surfaces. (English) Zbl 07309171 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 27, 18 p. (2021). MSC: 53C55 53E99 PDF BibTeX XML Cite \textit{R. Takahashi}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 27, 18 p. (2021; Zbl 07309171) Full Text: DOI
Guang, Qiang A note on mean convex \(\lambda\)-surfaces in \(\mathbb{R}^3\). (English) Zbl 07308545 Proc. Am. Math. Soc. 149, No. 3, 1259-1266 (2021). MSC: 53C42 53E10 PDF BibTeX XML Cite \textit{Q. Guang}, Proc. Am. Math. Soc. 149, No. 3, 1259--1266 (2021; Zbl 07308545) Full Text: DOI
Choi, Beomjun; Haslhofer, Robert; Hershkovits, Or A note on the selfsimilarity of limit flows. (English) Zbl 07308543 Proc. Am. Math. Soc. 149, No. 3, 1239-1245 (2021). MSC: 53E10 53A05 PDF BibTeX XML Cite \textit{B. Choi} et al., Proc. Am. Math. Soc. 149, No. 3, 1239--1245 (2021; Zbl 07308543) Full Text: DOI
Huang, Zheng; Lucia, Marcello; Tarantello, Gabriella Bifurcation for minimal surface equation in hyperbolic 3-manifolds. (English) Zbl 07307582 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 243-279 (2021). MSC: 53C42 53A10 53C21 35J20 PDF BibTeX XML Cite \textit{Z. Huang} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 243--279 (2021; Zbl 07307582) Full Text: DOI
Yokoyama, Satoshi A stochastically perturbed mean curvature flow by colored noise. (English) Zbl 07306260 J. Theor. Probab. 34, No. 1, 214-240 (2021). MSC: 60H15 35K93 74A50 PDF BibTeX XML Cite \textit{S. Yokoyama}, J. Theor. Probab. 34, No. 1, 214--240 (2021; Zbl 07306260) Full Text: DOI
Gmeineder, Franz Partial regularity for symmetric quasiconvex functionals on BD. (English. French summary) Zbl 07305901 J. Math. Pures Appl. (9) 145, 83-129 (2021). MSC: 35J50 35J93 49J50 PDF BibTeX XML Cite \textit{F. Gmeineder}, J. Math. Pures Appl. (9) 145, 83--129 (2021; Zbl 07305901) Full Text: DOI
Li, Xingxiao; Liu, Yangyang; Qiao, Ruina A uniqueness theorem of complete Lagrangian translator in \(\mathbb C^2\). (English) Zbl 07302649 Manuscr. Math. 164, No. 1-2, 251-265 (2021). MSC: 53E10 53D12 53C40 PDF BibTeX XML Cite \textit{X. Li} et al., Manuscr. Math. 164, No. 1--2, 251--265 (2021; Zbl 07302649) Full Text: DOI
Kuwada, Kazumasa; Li, Xiang-Dong Monotonicity and rigidity of the \(\mathcal{W}\)-entropy on \(\mathsf{RCD} (0, N)\) spaces. (English) Zbl 07302645 Manuscr. Math. 164, No. 1-2, 119-149 (2021). MSC: 53C23 53C44 58J65 60J60 PDF BibTeX XML Cite \textit{K. Kuwada} and \textit{X.-D. Li}, Manuscr. Math. 164, No. 1--2, 119--149 (2021; Zbl 07302645) Full Text: DOI
Souam, Rabah Mean curvature rigidity of horospheres, hyperspheres, and hyperplanes. (English) Zbl 07302514 Arch. Math. 116, No. 1, 115-120 (2021). MSC: 53C40 53C21 53C24 PDF BibTeX XML Cite \textit{R. Souam}, Arch. Math. 116, No. 1, 115--120 (2021; Zbl 07302514) Full Text: DOI
Yang, Yunlong; Wu, Weiping The reverse isoperimetric inequality for convex plane curves through a length-preserving flow. (English) Zbl 07302513 Arch. Math. 116, No. 1, 107-113 (2021). MSC: 52A40 52A10 53C44 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{W. Wu}, Arch. Math. 116, No. 1, 107--113 (2021; Zbl 07302513) Full Text: DOI
Kalaj, David Gaussian curvature of minimal surface over a wedge. (English) Zbl 07302484 Anal. Math. Phys. 11, No. 1, Paper No. 37, 18 p. (2021). MSC: 31A05 53A10 PDF BibTeX XML Cite \textit{D. Kalaj}, Anal. Math. Phys. 11, No. 1, Paper No. 37, 18 p. (2021; Zbl 07302484) Full Text: DOI
Girão, Frederico; Pinheiro, Diego; Pinheiro, Neilha M.; Rodrigues, Diego Weighted Alexandrov-Fenchel inequalities in hyperbolic space and a conjecture of Ge, Wang, and Wu. (English) Zbl 07301343 Proc. Am. Math. Soc. 149, No. 1, 369-382 (2021). MSC: 52A20 53E10 53A35 PDF BibTeX XML Cite \textit{F. Girão} et al., Proc. Am. Math. Soc. 149, No. 1, 369--382 (2021; Zbl 07301343) Full Text: DOI
Bernstein, Jacob; Maggi, Francesco Symmetry and rigidity of minimal surfaces with Plateau-like singularities. (English) Zbl 07300732 Arch. Ration. Mech. Anal. 239, No. 2, 1177-1210 (2021). MSC: 53A10 49Q10 53C24 PDF BibTeX XML Cite \textit{J. Bernstein} and \textit{F. Maggi}, Arch. Ration. Mech. Anal. 239, No. 2, 1177--1210 (2021; Zbl 07300732) Full Text: DOI
Guan, Zhida; Li, Haizhong; Vrancken, Luc Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature. (English) Zbl 07299625 J. Geom. Phys. 160, Article ID 103984, 16 p. (2021). Reviewer: Themistocles M. Rassias (Athína) MSC: 53C40 58E20 53C42 PDF BibTeX XML Cite \textit{Z. Guan} et al., J. Geom. Phys. 160, Article ID 103984, 16 p. (2021; Zbl 07299625) Full Text: DOI
Wang, Yaohua 4-dimensional manifolds with nonnegative scalar curvature and CMC boundary. (English) Zbl 07298835 Commun. Contemp. Math. 23, No. 2, Article ID 1950094, 21 p. (2021). MSC: 53C20 83C99 53C42 PDF BibTeX XML Cite \textit{Y. Wang}, Commun. Contemp. Math. 23, No. 2, Article ID 1950094, 21 p. (2021; Zbl 07298835) Full Text: DOI
Quintino, Áurea Casinhas Constrained Willmore surfaces. Symmetries of a Möbius invariant integrable system (to appear). (English) Zbl 07298516 London Mathematical Society Lecture Note Series 465. Cambridge: Cambridge University Press (ISBN 978-1-108-79442-8/pbk). (2021). MSC: 53-02 53A10 53C42 49Q10 PDF BibTeX XML
Niinikoski, Joonas Volume preserving mean curvature flows near strictly stable sets in flat torus. (English) Zbl 07297747 J. Differ. Equations 276, 149-186 (2021). MSC: 53E10 35K93 PDF BibTeX XML Cite \textit{J. Niinikoski}, J. Differ. Equations 276, 149--186 (2021; Zbl 07297747) Full Text: DOI
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 07296638 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 07296638) Full Text: DOI
Aiex, Nicolau S.; Hong, Han Index estimates for surfaces with constant mean curvature in 3-dimensional manifolds. (English) Zbl 07294622 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 3, 19 p. (2021). Reviewer: Jie Xiao (St. John’s) MSC: 53A10 49Q10 49R05 PDF BibTeX XML Cite \textit{N. S. Aiex} and \textit{H. Hong}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 3, 19 p. (2021; Zbl 07294622) Full Text: DOI
Angenent, Sigurd; You, Qian Ancient solutions to curve shortening with finite total curvature. (English) Zbl 07291885 Trans. Am. Math. Soc. 374, No. 2, 863-880 (2021). Reviewer: Ergin Bayram (Samsun) MSC: 53A04 53E10 PDF BibTeX XML Cite \textit{S. Angenent} and \textit{Q. You}, Trans. Am. Math. Soc. 374, No. 2, 863--880 (2021; Zbl 07291885) Full Text: DOI
Nardulli, Stefano; Russo, Francesco G. On the Hamilton’s isoperimetric ratio in complete Riemannian manifolds of finite volume. (English) Zbl 07289414 J. Funct. Anal. 280, No. 4, Article ID 108843, 36 p. (2021). MSC: 49Q20 53E20 53A10 49Q10 53C20 PDF BibTeX XML Cite \textit{S. Nardulli} and \textit{F. G. Russo}, J. Funct. Anal. 280, No. 4, Article ID 108843, 36 p. (2021; Zbl 07289414) Full Text: DOI
Ho, Pak Tung; Lee, Junyeop; Shin, Jinwoo The second generalized Yamabe invariant and conformal mean curvature flow on manifolds with boundary. (English) Zbl 07289104 J. Differ. Equations 274, 251-305 (2021). MSC: 53E10 53C21 35R01 57M50 PDF BibTeX XML Cite \textit{P. T. Ho} et al., J. Differ. Equations 274, 251--305 (2021; Zbl 07289104) Full Text: DOI
Da Silva, Luiz C. B. Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces. (English) Zbl 07287132 Math. J. Okayama Univ. 63, 15-52 (2021). MSC: 53A35 53A40 53A10 PDF BibTeX XML Cite \textit{L. C. B. Da Silva}, Math. J. Okayama Univ. 63, 15--52 (2021; Zbl 07287132) Full Text: Link
Domingo-Juan, M. Carmen; Miquel, Vicente; Zhu, Jonathan J. Reilly’s type inequality for the Laplacian associated to a density related with shrinkers for MCF. (English) Zbl 07285707 J. Differ. Equations 272, 958-978 (2021). MSC: 53C21 53E10 53C42 58J50 PDF BibTeX XML Cite \textit{M. C. Domingo-Juan} et al., J. Differ. Equations 272, 958--978 (2021; Zbl 07285707) Full Text: DOI
Gao, Qiang; Zhou, Hengyu The area minimizing problem in conformal cones. I. (English) Zbl 07285378 J. Funct. Anal. 280, No. 3, Article ID 108827, 40 p. (2021). MSC: 49Q20 53A10 35A01 35J25 PDF BibTeX XML Cite \textit{Q. Gao} and \textit{H. Zhou}, J. Funct. Anal. 280, No. 3, Article ID 108827, 40 p. (2021; Zbl 07285378) Full Text: DOI
Jian, Huaiyu; Li, You Global regularity for minimal graphs over convex domains in hyperbolic space. (English) Zbl 07283604 J. Differ. Equations 271, 963-978 (2021). Reviewer: Huansong Zhou (Wuhan) MSC: 35J93 35B65 35J25 PDF BibTeX XML Cite \textit{H. Jian} and \textit{Y. Li}, J. Differ. Equations 271, 963--978 (2021; Zbl 07283604) Full Text: DOI
Cheikh Ali, Hussein Hardy-Sobolev inequalities with singularities on non smooth boundary. Part 2: influence of the global geometry in small dimensions. (English) Zbl 1451.35010 J. Differ. Equations 270, 185-216 (2021). MSC: 35A23 35J61 PDF BibTeX XML Cite \textit{H. Cheikh Ali}, J. Differ. Equations 270, 185--216 (2021; Zbl 1451.35010) Full Text: DOI
Folino, Raffaele; Plaza, Ramón G.; Strani, Marta Metastable patterns for a reaction-diffusion model with mean curvature-type diffusion. (English) Zbl 07265495 J. Math. Anal. Appl. 493, No. 1, Article ID 124455, 29 p. (2021). MSC: 35B 92 PDF BibTeX XML Cite \textit{R. Folino} et al., J. Math. Anal. Appl. 493, No. 1, Article ID 124455, 29 p. (2021; Zbl 07265495) Full Text: DOI
Dirr, Nicolas; Dragoni, Federica; Grande, Raffaele Asymptotics for optimal controls for horizontal mean curvature flow. (English) Zbl 1450.49010 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112076, 17 p. (2021). MSC: 49K20 53E10 53C17 35D40 PDF BibTeX XML Cite \textit{N. Dirr} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112076, 17 p. (2021; Zbl 1450.49010) Full Text: DOI
Freidin, Brian; McGrath, Peter Sharp area bounds for free boundary minimal surfaces in conformally Euclidean balls. (English) Zbl 07313497 Int. Math. Res. Not. 2020, No. 18, 5630-5641 (2020). MSC: 53C42 53A10 PDF BibTeX XML Cite \textit{B. Freidin} and \textit{P. McGrath}, Int. Math. Res. Not. 2020, No. 18, 5630--5641 (2020; Zbl 07313497) Full Text: DOI
Takasao, Keisuke Global existence and monotonicity formula for volume preserving mean curvature flow. (English) Zbl 07311514 RIMS Kôkyûroku Bessatsu B80, 81-94 (2020). MSC: 35K93 53C44 PDF BibTeX XML Cite \textit{K. Takasao}, RIMS Kôkyûroku Bessatsu B80, 81--94 (2020; Zbl 07311514) Full Text: Link
Koike, Naoyuki Volume-preserving mean curvature flow for tubes in rank one symmetric spaces of non-compact type. (English) Zbl 07311513 RIMS Kôkyûroku Bessatsu B80, 57-80 (2020). MSC: 53E10 53C35 PDF BibTeX XML Cite \textit{N. Koike}, RIMS Kôkyûroku Bessatsu B80, 57--80 (2020; Zbl 07311513) Full Text: Link
Raujouan, Thomas On Delaunay ends in the DPW method. On Delaunay ends in the DPW method. (English) Zbl 07310878 Indiana Univ. Math. J. 69, No. 7, 2365-2393 (2020). MSC: 53A10 53C42 30 PDF BibTeX XML Cite \textit{T. Raujouan}, Indiana Univ. Math. J. 69, No. 7, 2365--2393 (2020; Zbl 07310878) Full Text: DOI
Dipierro, Serena A comparison between the nonlocal and the classical worlds: minimal Surfaces, phase transitions, and geometric flows. (English) Zbl 07308959 Notices Am. Math. Soc. 67, No. 9, 1324-1335 (2020). MSC: 53A10 53E10 53-02 53Z99 PDF BibTeX XML Cite \textit{S. Dipierro}, Notices Am. Math. Soc. 67, No. 9, 1324--1335 (2020; Zbl 07308959) Full Text: DOI
Shi, Ke A non-local expanding flow of convex closed curves in the plane. (English) Zbl 07308663 Int. J. Math. 31, No. 14, Article ID 2050115, 16 p. (2020). MSC: 35K15 35K55 53A04 53C44 PDF BibTeX XML Cite \textit{K. Shi}, Int. J. Math. 31, No. 14, Article ID 2050115, 16 p. (2020; Zbl 07308663) Full Text: DOI
Bucur, Claudia; Dipierro, Serena; Lombardini, Luca; Valdinoci, Enrico Minimisers of a fractional seminorm and nonlocal minimal surfaces. (English) Zbl 07307917 Interfaces Free Bound. 22, No. 4 (2020). MSC: 35R11 26A33 53A10 49Q05 47J05 PDF BibTeX XML Full Text: DOI
Kim, Lami; Tonegawa, Yoshihiro Existence and regularity theorems of one-dimensional Brakke flows. (English) Zbl 07307916 Interfaces Free Bound. 22, No. 4, 505-550 (2020). MSC: 53E10 49Q20 49N60 PDF BibTeX XML Cite \textit{L. Kim} and \textit{Y. Tonegawa}, Interfaces Free Bound. 22, No. 4, 505--550 (2020; Zbl 07307916) Full Text: DOI
Kovács, Balázs; Li, Buyang; Lubich, Christian A convergent algorithm for forced mean curvature flow driven by diffusion on the surface. (English) Zbl 07307915 Interfaces Free Bound. 22, No. 4, 443-464 (2020). MSC: 35R01 65M60 65M15 65M12 PDF BibTeX XML Cite \textit{B. Kovács} et al., Interfaces Free Bound. 22, No. 4, 443--464 (2020; Zbl 07307915) Full Text: DOI
Pei, Minghe; Wang, Libo Positive radial solutions of a mean curvature equation in Lorentz-Minkowski space with strong singularity. (English) Zbl 07304794 Appl. Anal. 99, No. 9, 1631-1637 (2020). MSC: 35J93 35J75 35A20 PDF BibTeX XML Cite \textit{M. Pei} and \textit{L. Wang}, Appl. Anal. 99, No. 9, 1631--1637 (2020; Zbl 07304794) Full Text: DOI
Gianniotis, Panagiotis; Haslhofer, Robert Diameter and curvature control under mean curvature flow. (English) Zbl 07304773 Am. J. Math. 142, No. 6, 1877-1896 (2020). MSC: 53E10 49Q10 PDF BibTeX XML Cite \textit{P. Gianniotis} and \textit{R. Haslhofer}, Am. J. Math. 142, No. 6, 1877--1896 (2020; Zbl 07304773) Full Text: DOI
López, Rafael Compact singular minimal surfaces with boundary. (English) Zbl 07304770 Am. J. Math. 142, No. 6, 1771-1795 (2020). MSC: 53A10 49Q05 PDF BibTeX XML Cite \textit{R. López}, Am. J. Math. 142, No. 6, 1771--1795 (2020; Zbl 07304770) Full Text: DOI
Mccoy, James; Wheeler, Glen; Wu, Yuhan A sixth order flow of plane curves with boundary conditions. (English) Zbl 07303955 Tohoku Math. J. (2) 72, No. 3, 379-393 (2020). MSC: 53C44 PDF BibTeX XML Cite \textit{J. Mccoy} et al., Tohoku Math. J. (2) 72, No. 3, 379--393 (2020; Zbl 07303955) Full Text: DOI Euclid
Ji, Zhengchao Ancient solutions of codimension two surfaces with curvature pinching in \(\mathbb{R}^4\). (English) Zbl 07303806 Bull. Korean Math. Soc. 57, No. 4, 1049-1060 (2020). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{Z. Ji}, Bull. Korean Math. Soc. 57, No. 4, 1049--1060 (2020; Zbl 07303806) Full Text: DOI
Burtscher, Annegret; Ketterer, Christian; McCann, Robert J.; Woolgar, Eric Inscribed radius bounds for lower Ricci bounded metric measure spaces with mean convex boundary. (English) Zbl 07302816 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 131, 29 p. (2020). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 51K10 53C21 30L99 83C75 PDF BibTeX XML Cite \textit{A. Burtscher} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 131, 29 p. (2020; Zbl 07302816) Full Text: DOI
Cheng, Xinyue; Yin, Li; Li, Tingting A class of Randers metrics of scalar flag curvature. (English) Zbl 07301550 Int. J. Math. 31, No. 13, Article ID 2050114, 16 p. (2020). MSC: 53B40 53C60 PDF BibTeX XML Cite \textit{X. Cheng} et al., Int. J. Math. 31, No. 13, Article ID 2050114, 16 p. (2020; Zbl 07301550) Full Text: DOI
Große, Nadine; Nakad, Roger Totally umbilical hypersurfaces of \(\mathrm{Spin}^c\) manifolds carrying special spinor fields. (English) Zbl 07301522 Int. J. Math. 31, No. 12, Article ID 2050100, 19 p. (2020). MSC: 53C27 53C25 53C42 PDF BibTeX XML Cite \textit{N. Große} and \textit{R. Nakad}, Int. J. Math. 31, No. 12, Article ID 2050100, 19 p. (2020; Zbl 07301522) Full Text: DOI
Hu, Jin-Hua; Mao, Jing; Tu, Qiang; Wu, Di A class of inverse curvature flows in \(\mathbb{R}^{n+1}\). II. (English) Zbl 07301071 J. Korean Math. Soc. 57, No. 5, 1299-1322 (2020). MSC: 53E10 53A07 35K96 PDF BibTeX XML Cite \textit{J.-H. Hu} et al., J. Korean Math. Soc. 57, No. 5, 1299--1322 (2020; Zbl 07301071) Full Text: DOI
Giga, Yoshikazu; Požár, Norbert Viscosity solutions for the crystalline mean curvature flow with a nonuniform driving force term. (English) Zbl 07296591 SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 39, 25 p. (2020). MSC: 35D40 35K67 35K55 35B51 35K93 53E10 PDF BibTeX XML Cite \textit{Y. Giga} and \textit{N. Požár}, SN Partial Differ. Equ. Appl. 1, No. 6, Paper No. 39, 25 p. (2020; Zbl 07296591) Full Text: DOI
Okabe, Shinya; Yoshizawa, Kensuke A dynamical approach to the variational inequality on modified elastic graphs. (English) Zbl 07296288 Geom. Flows 5, 78-101 (2020). MSC: 35K86 35K25 53E10 49J40 PDF BibTeX XML Cite \textit{S. Okabe} and \textit{K. Yoshizawa}, Geom. Flows 5, 78--101 (2020; Zbl 07296288) Full Text: DOI
Li, Yunchuan; Liu, Yan; Wei, Guoxin A rigidity theorem of \(\lambda\)-hypersurfaces. (Chinese. English summary) Zbl 07295758 J. South China Norm. Univ., Nat. Sci. Ed. 52, No. 4, 104-106 (2020). MSC: 53C24 53C42 PDF BibTeX XML Cite \textit{Y. Li} et al., J. South China Norm. Univ., Nat. Sci. Ed. 52, No. 4, 104--106 (2020; Zbl 07295758) Full Text: DOI
Fang, Jianbo; Liang, Lin Two characteristics of isoparametric surface in \({\mathbb{S}^3}\). (English) Zbl 07295473 J. Math., Wuhan Univ. 40, No. 4, 446-450 (2020). MSC: 53A10 53C42 PDF BibTeX XML Cite \textit{J. Fang} and \textit{L. Liang}, J. Math., Wuhan Univ. 40, No. 4, 446--450 (2020; Zbl 07295473) Full Text: DOI
Wang, Qi; Zhou, Zhijin Integral formulas for compact submanifolds in Euclid space. (English) Zbl 07295470 J. Math., Wuhan Univ. 40, No. 4, 415-420 (2020). MSC: 53C42 53C40 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{Z. Zhou}, J. Math., Wuhan Univ. 40, No. 4, 415--420 (2020; Zbl 07295470) Full Text: DOI
Tang, Kai Several parabolic Schwarz lemmas for Hermitian curvature flows. (English) Zbl 07294980 Adv. Math., Beijing 49, No. 5, 626-634 (2020). MSC: 53C55 53C44 PDF BibTeX XML Cite \textit{K. Tang}, Adv. Math., Beijing 49, No. 5, 626--634 (2020; Zbl 07294980) Full Text: DOI
Cheshkova, M. A. Transformation of Bianchi for Minding top. (Russian. English summary) Zbl 07293289 Differ. Geom. Mnogoobr. Figur 51, 135-142 (2020). MSC: 53A10 PDF BibTeX XML Cite \textit{M. A. Cheshkova}, Differ. Geom. Mnogoobr. Figur 51, 135--142 (2020; Zbl 07293289) Full Text: DOI
Calder, Jeff; Smart, Charles K. The limit shape of convex hull peeling. (English) Zbl 07292303 Duke Math. J. 169, No. 11, 2079-2124 (2020). MSC: 35D40 35B27 68Q87 97K50 91A05 53E10 PDF BibTeX XML Cite \textit{J. Calder} and \textit{C. K. Smart}, Duke Math. J. 169, No. 11, 2079--2124 (2020; Zbl 07292303) Full Text: DOI Euclid
Weng, Liangjun Mean curvature flow in a Riemannian manifold endowed with a Killing vector field. (English) Zbl 07291160 Pac. J. Math. 308, No. 2, 435-472 (2020). MSC: 53E10 35J66 PDF BibTeX XML Cite \textit{L. Weng}, Pac. J. Math. 308, No. 2, 435--472 (2020; Zbl 07291160) Full Text: DOI
Perdomo, Oscar M. Spectrum of the Laplacian and the Jacobi operator on rotational CMC hypersurfaces of spheres. (English) Zbl 07291159 Pac. J. Math. 308, No. 2, 419-433 (2020). MSC: 53C42 58J50 PDF BibTeX XML Cite \textit{O. M. Perdomo}, Pac. J. Math. 308, No. 2, 419--433 (2020; Zbl 07291159) Full Text: DOI
Dipierro, Serena; Savin, Ovidiu; Valdinoci, Enrico Boundary properties of fractional objects: flexibility of linear equations and rigidity of minimal graphs. (English) Zbl 07291135 J. Reine Angew. Math. 769, 121-164 (2020). MSC: 35R11 35R25 35B65 53A10 PDF BibTeX XML Cite \textit{S. Dipierro} et al., J. Reine Angew. Math. 769, 121--164 (2020; Zbl 07291135) Full Text: DOI
Emmer, Michele From soap bubbles to Fields Medals: an exhibition. (English) Zbl 07290780 Emmer, Michele (ed.) et al., Imagine math 7. Between culture and mathematics. Proceedings of the international conference on mathematics and culture, Venice, Italy, March 29–31, 2019. Cham: Springer (ISBN 978-3-030-42652-1/hbk; 978-3-030-42653-8/ebook). 45-70 (2020). MSC: 00A09 53A10 49Q20 PDF BibTeX XML Cite \textit{M. Emmer}, in: Imagine math 7. Between culture and mathematics. Proceedings of the international conference on mathematics and culture, Venice, Italy, March 29--31, 2019. Cham: Springer. 45--70 (2020; Zbl 07290780) Full Text: DOI
Colding, Tobias Holck; Minicozzi, William P. Complexity of parabolic systems. (English) Zbl 07290680 Publ. Math., Inst. Hautes Étud. Sci. 132, 83-135 (2020). MSC: 53E10 53A07 35K55 PDF BibTeX XML Cite \textit{T. H. Colding} and \textit{W. P. Minicozzi}, Publ. Math., Inst. Hautes Étud. Sci. 132, 83--135 (2020; Zbl 07290680) Full Text: DOI
Fischer, Julian; Laux, Tim; Simon, Theresa M. Convergence rates of the Allen-Cahn equation to mean curvature flow: a short proof based on relative entropies. (English) Zbl 07289134 SIAM J. Math. Anal. 52, No. 6, 6222-6233 (2020). MSC: 53E10 35A15 35K57 53C38 35B25 PDF BibTeX XML Cite \textit{J. Fischer} et al., SIAM J. Math. Anal. 52, No. 6, 6222--6233 (2020; Zbl 07289134) Full Text: DOI
Robertson, Craig; Rupflin, Melanie Finite-time degeneration for variants of Teichmüller harmonic map flow. (English) Zbl 07288967 J. Lond. Math. Soc., II. Ser. 102, No. 2, 535-556 (2020). MSC: 53A10 53C43 53E99 58E20 30F99 PDF BibTeX XML Cite \textit{C. Robertson} and \textit{M. Rupflin}, J. Lond. Math. Soc., II. Ser. 102, No. 2, 535--556 (2020; Zbl 07288967) Full Text: DOI
Kawakami, Yu Value distribution for the Gauss maps of various classes of surfaces. (English. Japanese original) Zbl 07288754 Sugaku Expo. 33, No. 2, 223-237 (2020); translation from Sūgaku 69, No. 1, 56-69 (2017). MSC: 53A10 30D35 53C42 53-02 PDF BibTeX XML Full Text: DOI
Costa-Filho, Wagner O. A note on the characterization of spheres as self-shrinkers. (English) Zbl 07286884 Arch. Math. 115, No. 6, 737-739 (2020). MSC: 53C42 53C44 PDF BibTeX XML Cite \textit{W. O. Costa-Filho}, Arch. Math. 115, No. 6, 737--739 (2020; Zbl 07286884) Full Text: DOI
Naber, Aaron; Valtorta, Daniele The singular structure and regularity of stationary varifolds. (English) Zbl 07286833 J. Eur. Math. Soc. (JEMS) 22, No. 10, 3305-3382 (2020). MSC: 35J60 53A10 58A25 PDF BibTeX XML Cite \textit{A. Naber} and \textit{D. Valtorta}, J. Eur. Math. Soc. (JEMS) 22, No. 10, 3305--3382 (2020; Zbl 07286833) Full Text: DOI
Machado, Cid D. F.; Riveros, Carlos M. C. Weingarten hypersurfaces of the spherical type in Euclidean spaces. (English) Zbl 07286002 Commentat. Math. Univ. Carol. 61, No. 2, 213-236 (2020). MSC: 53C42 53A35 PDF BibTeX XML Cite \textit{C. D. F. Machado} and \textit{C. M. C. Riveros}, Commentat. Math. Univ. Carol. 61, No. 2, 213--236 (2020; Zbl 07286002) Full Text: DOI
Ganchev, Georgi; Kanchev, Krasimir Canonical coordinates and natural equations for minimal time-like surfaces in \(\mathbf{R}^4_2\). (English) Zbl 07285733 Kodai Math. J. 43, No. 3, 524-572 (2020). MSC: 53C42 53A10 53B30 PDF BibTeX XML Cite \textit{G. Ganchev} and \textit{K. Kanchev}, Kodai Math. J. 43, No. 3, 524--572 (2020; Zbl 07285733) Full Text: DOI Euclid
Catino, Giovanni; Roncoroni, Alberto; Vezzoni, Luigi On the umbilic set of immersed surfaces in three-dimensional space forms. (English) Zbl 07285398 Bull. Sci. Math. 165, Article ID 102917, 7 p. (2020). MSC: 53C40 53C42 53A10 PDF BibTeX XML Cite \textit{G. Catino} et al., Bull. Sci. Math. 165, Article ID 102917, 7 p. (2020; Zbl 07285398) Full Text: DOI
Zhou, Xin On the multiplicity one conjecture in min-max theory. (English) Zbl 07285354 Ann. Math. (2) 192, No. 3, 767-820 (2020). MSC: 53C42 58E12 49Q05 49J35 PDF BibTeX XML Cite \textit{X. Zhou}, Ann. Math. (2) 192, No. 3, 767--820 (2020; Zbl 07285354) Full Text: DOI
Fajman, David; Kröncke, Klaus Stable fixed points of the Einstein flow with positive cosmological constant. (English) Zbl 07283480 Commun. Anal. Geom. 28, No. 7, 1533-1576 (2020). MSC: 53C50 53E99 53E20 83C50 83C05 PDF BibTeX XML Cite \textit{D. Fajman} and \textit{K. Kröncke}, Commun. Anal. Geom. 28, No. 7, 1533--1576 (2020; Zbl 07283480) Full Text: DOI
Lin, Longzhi Mean curvature flow of star-shaped hypersurfaces. (English) Zbl 07283475 Commun. Anal. Geom. 28, No. 6, 1315-1336 (2020). MSC: 53E10 53A07 PDF BibTeX XML Cite \textit{L. Lin}, Commun. Anal. Geom. 28, No. 6, 1315--1336 (2020; Zbl 07283475) Full Text: DOI
Guo, Siao-Hao Asymptotic behavior and stability of mean curvature flow with a conical end. (English) Zbl 07281412 Adv. Math. 375, Article ID 107408, 63 p. (2020). Reviewer: Willian Tokura (Gôiania) MSC: 53E10 53A07 35K55 PDF BibTeX XML Cite \textit{S.-H. Guo}, Adv. Math. 375, Article ID 107408, 63 p. (2020; Zbl 07281412) Full Text: DOI
Andrews, Ben; Hu, Yingxiang; Li, Haizhong Harmonic mean curvature flow and geometric inequalities. (English) Zbl 07281405 Adv. Math. 375, Article ID 107393, 28 p. (2020). MSC: 53E10 53C43 53A35 PDF BibTeX XML Cite \textit{B. Andrews} et al., Adv. Math. 375, Article ID 107393, 28 p. (2020; Zbl 07281405) Full Text: DOI
Figueiredo, Giovany; Suarez, Antonio Existence of positive solutions for prescribed mean curvature problems with nonlocal term via sub- and supersolution method. (English) Zbl 07279000 Math. Methods Appl. Sci. 43, No. 15, 8496-8505 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J62 35A15 35B33 35B25 35J60 PDF BibTeX XML Cite \textit{G. Figueiredo} and \textit{A. Suarez}, Math. Methods Appl. Sci. 43, No. 15, 8496--8505 (2020; Zbl 07279000) Full Text: DOI
Gupta, Ram Shankar; Kumari, Deepika; Ahmad, Sharfuddin Lorentz hypersurfaces in pseudo-Euclidean space \(E_1^5\). (English) Zbl 07277548 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 1, 123-133 (2020). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 53C40 53C42 53A35 53B30 PDF BibTeX XML Cite \textit{R. S. Gupta} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 1, 123--133 (2020; Zbl 07277548) Full Text: DOI
Kalinin, N. Legendrian curves in \(\mathbb{C} P^3\): cubics and curves on a quadric surface. (English) Zbl 1448.53086 J. Math. Sci., New York 251, No. 4, 489-502 (2020) and Zap. Nauchn. Semin. POMI 476, 92-110 (2018). MSC: 53D45 14N10 14H50 53A10 14Q05 PDF BibTeX XML Cite \textit{N. Kalinin}, J. Math. Sci., New York 251, No. 4, 489--502 (2020; Zbl 1448.53086) Full Text: DOI
Tozak, Hatice; Dede, Mustafa; Ekici, Cumali Translation surfaces according to a new frame. (English) Zbl 07276390 Casp. J. Math. Sci. 9, No. 1, 56-67 (2020). MSC: 53A05 53A10 53A35 PDF BibTeX XML Cite \textit{H. Tozak} et al., Casp. J. Math. Sci. 9, No. 1, 56--67 (2020; Zbl 07276390) Full Text: DOI
Ha, Pham Hoang Gaussian curvature and unicity problem of Gauss maps of various classes of surfaces. (English) Zbl 07276270 Nagoya Math. J. 240, 275-297 (2020). Reviewer: Jie Xiao (St. John’s) MSC: 53A10 30D35 53C42 PDF BibTeX XML Cite \textit{P. H. Ha}, Nagoya Math. J. 240, 275--297 (2020; Zbl 07276270) Full Text: DOI
Mosadegh, Najma; Abedi, Esmaiel; Ilmakchi, Mohammad Nonexistence proper biharmonic Hopf \(QR\)-hypersurfaces in the quaternionic Euclidean space \(Q^n\). (English) Zbl 07276256 Balkan J. Geom. Appl. 25, No. 2, 66-75 (2020). MSC: 53C42 53A10 53C26 PDF BibTeX XML Cite \textit{N. Mosadegh} et al., Balkan J. Geom. Appl. 25, No. 2, 66--75 (2020; Zbl 07276256) Full Text: Link
de Lima, Eudes L.; de Lima, Henrique F.; Lima, Eraldo A. jun.; Medeiros, Adriano A. Constant mean curvature spacelike hypersurfaces in standard static spaces: rigidity and parabolicity. (English) Zbl 07276077 Hokkaido Math. J. 49, No. 2, 297-323 (2020). Reviewer: Atsushi Fujioka (Osaka) MSC: 53C42 53B30 53C50 PDF BibTeX XML Cite \textit{E. L. de Lima} et al., Hokkaido Math. J. 49, No. 2, 297--323 (2020; Zbl 07276077) Full Text: DOI Euclid
Chen, Tianlan; Duan, Lei Ambrosetti-Prodi type results for a Neumann problem with a mean curvature operator in Minkowski spaces. (English) Zbl 07274824 Rocky Mt. J. Math. 50, No. 5, 1627-1635 (2020). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B15 34B16 PDF BibTeX XML Cite \textit{T. Chen} and \textit{L. Duan}, Rocky Mt. J. Math. 50, No. 5, 1627--1635 (2020; Zbl 07274824) Full Text: DOI Euclid
Rodríguez Cárdenas, Carlos Wilson Genericity of nondegenerate free boundary CMC embeddings. (English) Zbl 07273303 Mediterr. J. Math. 17, No. 6, Paper No. 188, 25 p. (2020). MSC: 53C42 58E12 49Q10 PDF BibTeX XML Cite \textit{C. W. Rodríguez Cárdenas}, Mediterr. J. Math. 17, No. 6, Paper No. 188, 25 p. (2020; Zbl 07273303) Full Text: DOI
Giga, Yoshikazu; Mitake, Hiroyoshi; Tran, Hung V. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. (English) Zbl 1452.35034 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3983-3999 (2020). MSC: 35B40 35K93 35K20 53E10 PDF BibTeX XML Cite \textit{Y. Giga} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3983--3999 (2020; Zbl 1452.35034) Full Text: DOI