zbMATH — the first resource for mathematics

The existence of 5-sparse Steiner triple systems of order \(n \equiv 3 \mod 6\), \(n \notin \{9,15 \}\). (English) Zbl 1157.05011
Summary: This paper shows the existence of 5-sparse Steiner triple systems of order \(n\equiv 3 \mod 6\) for \(n \geqslant 21\) by constructing meager systems.

05B07 Triple systems
Full Text: DOI
[1] Erdős, Paul., Problems and results in combinatorial analysis, Creat. math., 9, 25, (1976) · Zbl 0361.05037
[2] Forbes, A.D.; Grannell, M.J.; Griggs, T.S., On 6-sparse Steiner triple systems, J. combin. theory ser. A, 114, 235-252, (2007) · Zbl 1121.05015
[3] Grannell, M.J.; Griggs, T.S.; Whitehead, C.A., The resolution of the anti-pasch conjecture, J. combin. des., 8, 300-309, (2000) · Zbl 0959.05016
[4] Grannell, M.J.; Griggs, T.S.; Phelan, J.S., A new look at an old construction for Steiner triple systems, Ars combin. A, 25, 55-60, (1988) · Zbl 0656.05017
[5] Griggs, T.S.; Murphy, J.; Phelan, J.S., Anti-pasch Steiner triple systems, J. combin. inform. system sci., 15, 79-84, (1990) · Zbl 0741.05009
[6] Schmidt, W.M., Equations over finite fields, Lecture notes in math., vol. 536, (1976), Springer-Verlag
[7] Wanless, I.M., Diagonally cyclic Latin squares, European J. combin., 25, 393-413, (2004) · Zbl 1047.05007
[8] Wolfe, A., The resolution of the anti-mitre Steiner triple system conjecture, J. combin. des., 14, 229-236, (2005) · Zbl 1089.05013
[9] Wolfe, A., 5-sparse Steiner triple systems of order n exist for almost all admissible n, Electron. J. combin., 12, (2005), #R68, 42 p. (electronic) · Zbl 1079.05013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.