×

A one-sample test for normality with kernel methods. (English) Zbl 1466.62340

Summary: We propose a new one-sample test for normality in a Reproducing Kernel Hilbert Space (RKHS). Namely, we test the null-hypothesis of belonging to a given family of Gaussian distributions. Hence, our procedure may be applied either to test data for normality or to test parameters (mean and covariance) if data are assumed Gaussian. Our test is based on the same principle as the MMD (Maximum Mean Discrepancy) which is usually used for two-sample tests such as homogeneity or independence testing. Our method makes use of a special kind of parametric bootstrap (typical of goodness-of-fit tests) which is computationally more efficient than standard parametric bootstrap. Moreover, an upper bound for the Type-II error highlights the dependence on influential quantities. Experiments illustrate the practical improvement allowed by our test in high-dimensional settings where common normality tests are known to fail. We also consider an application to covariance rank selection through a sequential procedure.

MSC:

62H15 Hypothesis testing in multivariate analysis
62F40 Bootstrap, jackknife and other resampling methods

Software:

spcov
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc.68 337-404. · Zbl 0037.20701
[2] Bien, J. and Tibshirani, R.J. (2011). Sparse estimation of a covariance matrix. Biometrika98 807-820. · Zbl 1228.62063
[3] Blanchard, G., Sugiyama, M., Kawanabe, M., Spokoiny, V. and Muller, K.-R. (2006). Non-Gaussian component analysis: A semi-parametric framework for linear dimension reduction. In NIPS.
[4] Bouveyron, C., Fauvel, M. and Girard, S. (2015). Kernel discriminant analysis and clustering with parsimonious Gaussian process models. Stat. Comput.25 1143-1162. · Zbl 1331.62302
[5] Brunel, É., Mas, A. and Roche, A. (2016). Non-asymptotic adaptive prediction in functional linear models. J. Multivariate Anal.143 208-232. · Zbl 1328.62408
[6] Burke, M.D. (2000). Multivariate tests-of-fit and uniform confidence bands using a weighted bootstrap. Statist. Probab. Lett.46 13-20. · Zbl 0941.62065
[7] Cardot, H. and Johannes, J. (2010). Thresholding projection estimators in functional linear models. J. Multivariate Anal.101 395-408. · Zbl 1178.62032
[8] Choi, Y., Taylor, J. and Tibshirani, R. (2017). Selecting the number of principal components: Estimation of the true rank of a noisy matrix. Ann. Statist.45 2590-2617. · Zbl 1394.62073
[9] Christmann, A. and Steinwart, I. (2010). Universal kernels on non-standard input spaces. In Advances in Neural Information Processing Systems 406-414.
[10] Cuesta-Albertos, J.A., del Barrio, E., Fraiman, R. and Matrán, C. (2007). The random projection method in goodness of fit for functional data. Comput. Statist. Data Anal.51 4814-4831. · Zbl 1162.62363
[11] Diederichs, E., Juditsky, A., Nemirovski, A. and Spokoiny, V. (2013). Sparse non Gaussian component analysis by semidefinite programming. Mach. Learn.91 211-238. · Zbl 1273.68297
[12] Diederichs, E., Juditsky, A., Spokoiny, V. and Schütte, C. (2010). Sparse non-Gaussian component analysis. IEEE Trans. Inform. Theory56 3033-3047. · Zbl 1366.62116
[13] Fukumizu, K., Gretton, A., Sun, X. and Schölkopf, B. (2007). Kernel measures of conditional dependence. In NIPS20 489-496.
[14] Fukumizu, K., Sriperumbudur, B., Gretton, A. and Schölkopf, B. (2009). Characteristic Kernels on groups and semigroups. In NIPS.
[15] Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B. and Smola, A. (2007). A kernel method for the two-sample-problem. In Advances in Neural Information Processing Systems (B. Schoelkopf, J. Platt and T. Hoffman, eds.) 19 513-520. Cambridge: MIT Press.
[16] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B. and Smola, A. (2012). A kernel two-sample test. J. Mach. Learn. Res.13 723-773. · Zbl 1283.62095
[17] Gretton, A., Fukumizu, K., Harchaoui, Z. and Sriperumbudur, B.K. (2009). A fast, consistent kernel two-sample test. In NIPS.
[18] Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B. and Smola, A.J. (2007). A kernel statistical test of independence. In NIPS 21.
[19] Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K. and Sriperumbudur, B.K. (2012). Optimal kernel choice for large-scale two-sample tests. In Advances in Neural Information Processing Systems 1205-1213.
[20] Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Comm. Statist. Theory Methods19 3595-3617. · Zbl 0738.62068
[21] Hoffmann-Jørgensen, J. and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Probab.4 587-599. · Zbl 0368.60022
[22] Josse, J. and Husson, F. (2012). Selecting the number of components in principal component analysis using cross-validation approximations. Comput. Statist. Data Anal.56 1869-1879. · Zbl 1243.62082
[23] Kellner, J. and Celisse, A. (2019). Supplement to “A one-sample test for normality with kernel methods.” DOI:10.3150/18-BEJ1037SUPP. · Zbl 1466.62340
[24] Kojadinovic, I. and Yan, J. (2012). Goodness-of-fit testing based on a weighted bootstrap: A fast large-sample alternative to the parametric bootstrap. Canad. J. Statist.40 480-500. · Zbl 1349.62224
[25] Lehmann, E.L. and Romano, J.P. (2005). Testing Statistical Hypotheses, 3rd ed. New York: Springer. · Zbl 1076.62018
[26] Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika57 519-530. · Zbl 0214.46302
[27] Ratsimalahelo, Z. (2003). Strongly consistent determination of the rank of matrix. Econometrics.
[28] Reddi, S., Ramdas, A., Poczos, B., Singh, A. and Wasserman, L. (2015). On the high dimensional power of a linear-time two sample test under mean-shift alternatives. J. Mach. Learn. Res. 772-780.
[29] Robin, J.-M. and Smith, R.J. (2000). Tests of rank. Econometric Theory16 151-175. · Zbl 0957.62047
[30] Roth, V. (2006). Kernel Fisher discriminants for outlier detection. Neural Comput.18 942-960. · Zbl 1095.68673
[31] Roweis, S. (1998). EM algorithms for PCA and SPCA. In Advances in Neural Information Processing Systems 626-632. MIT Press.
[32] Schölkopf, B., Smola, A. and Müller, K.-R. (1997). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput.10 1299-1319.
[33] Sejdinovic, D., Sriperumbudur, B., Gretton, A. and Fukumizu, K. (2013). Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Statist.41 2263-2291. · Zbl 1281.62117
[34] Sriperumbudur, B.K., Gretton, A., Fukumizu, K., Schölkopf, B. and Lanckriet, G.R.G. (2010). Hilbert space embeddings and metrics on probability measures. J. Mach. Learn. Res.11 1517-1561. · Zbl 1242.60005
[35] Srivastava, M.S., Katayama, S. and Kano, Y. (2013). A two sample test in high dimensional data. J. Multivariate Anal.114 349-358. · Zbl 1255.62165
[36] Stute, W., Gonzáles Manteiga, W. and Presedo Quindimil, M. (1993). Bootstrap based goodness-of-fit tests. Metrika40 243-256. · Zbl 0770.62016
[37] Svantesson, T. and Wallace, J.W. (2003). Tests for assessing multivariate normality and the covariance structure of MIMO data. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03). 2003 IEEE International Conference on4 IV-656. IEEE.
[38] Székely, G.J. and Rizzo, M.L. (2005). A new test for multivariate normality. J. Multivariate Anal.93 58-80. · Zbl 1087.62070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.