Chentsov, Aleksandr Georgievich Ultrafilters and maximal linked systems: basic properties and topological constructions. (Russian. English summary) Zbl 07274521 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 52, 86-102 (2018). MSC: 28A33 PDF BibTeX XML Cite \textit{A. G. Chentsov}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 52, 86--102 (2018; Zbl 07274521) Full Text: DOI MNR
Gavrylkiv, V. M. Superextensions of cyclic semigroups. (English) Zbl 1321.20051 Carpathian Math. Publ. 5, No. 1, 36-43 (2013). MSC: 20M10 20M14 22A15 54B20 PDF BibTeX XML Cite \textit{V. M. Gavrylkiv}, Carpathian Math. Publ. 5, No. 1, 36--43 (2013; Zbl 1321.20051) Full Text: DOI
Brouwer, A. E.; Mills, C. F.; Mills, W. H.; Verbeek, A. Counting families of mutually intersecting sets. (English) Zbl 1267.05144 Electron. J. Comb. 20, No. 2, Research Paper P8, 8 p. (2013). MSC: 05C30 05C75 PDF BibTeX XML Cite \textit{A. E. Brouwer} et al., Electron. J. Comb. 20, No. 2, Research Paper P8, 8 p. (2013; Zbl 1267.05144) Full Text: Link
Banakh, Taras; Gavrylkiv, Volodymyr Algebra in the superextensions of twinic groups. (English) Zbl 1225.22004 Diss. Math. 473, 74 p. (2010). Reviewer: Kohzo Yamada (Shizuoka) MSC: 22A15 54B20 20M30 20M12 22A25 54D35 PDF BibTeX XML Cite \textit{T. Banakh} and \textit{V. Gavrylkiv}, Diss. Math. 473, 74 p. (2010; Zbl 1225.22004) Full Text: DOI arXiv
Ivanov, A. V. A space of complete linked systems. (English. Russian original) Zbl 0625.54012 Sib. Math. J. 27, 863-875 (1986); translation from Sib. Mat. Zh. 27, No. 6(160), 95-110 (1986). Reviewer: A.I.Bashkirov MSC: 54B20 54D35 PDF BibTeX XML Cite \textit{A. V. Ivanov}, Sib. Math. J. 27, 863--875 (1986; Zbl 0625.54012); translation from Sib. Mat. Zh. 27, No. 6(160), 95--110 (1986) Full Text: DOI
van de Vel, Marcel Convex Hilbert cubes in superextensions. (English) Zbl 0588.54026 Topology Appl. 22, 255-266 (1986). Reviewer: J.van Mill MSC: 54D35 57N20 52A01 PDF BibTeX XML Cite \textit{M. van de Vel}, Topology Appl. 22, 255--266 (1986; Zbl 0588.54026) Full Text: DOI
van Mill, Jan Superextensions of metrizable continua are Hilbert cubes. (English) Zbl 0362.54028 Fundam. Math. 103, 151-175 (1979). MSC: 54F15 54D35 PDF BibTeX XML Cite \textit{J. van Mill}, Fundam. Math. 103, 151--175 (1979; Zbl 0362.54028) Full Text: DOI EuDML
de Groot, J.; Jensen, G. A.; Verbeek, A. Superextensions. (English) Zbl 0197.48701 Math. Centrum, Amsterdam, Afd. Zuivere Wisk. ZW 1968-017, 33 p. (1968). MSC: 54D35 PDF BibTeX XML