×

Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. (English) Zbl 0996.74012

Summary: This paper deals with the identification of material parameters of elasticity relations based on Rivlin’s hyperelasticity for incompressible material response, where the free energy is a polynomial in the first and second invariant of right Cauchy-Green tensor. This elasticity relation has the advantage of incorporating the material parameters linearly. The numerical studies are applied to tension, torsion and combined tension-torsion tests with cylindrical carbon black-filled rubber specimens. In the identification process, the analytical solution of the resulting boundary value problem leads to a linear least-square solution. In this article the attention is focused on the numerical solution of several models proposed in the literature, and on their behavior for both a large and a small number of test data.

MSC:

74B20 Nonlinear elasticity
74G75 Inverse problems in equilibrium solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Haupt, P., Sedlan, K.: Viscoplasticity of elastomeric materials. Experimental Facts and Constitutive Modelling. Arch. Appl. Mech.71, 89-109 (2001). · Zbl 1007.74027
[2] Sedlan, K., Haupt, P.: Inelastisches Materialverhalten von gefüllten Elastomeren bei finiten Deformationen. In: Modellierung und Identifikation (Hartmann, S., Haupt, P., Ulbricht, V., eds.), pp. 223-234, Kassel: Gesamthochschul-Bibliothek 1998.
[3] Lion, A.: On the large deformation behaviour of reinforced rubber at different temperatures. J. Mech. Phys. Solids45, 1805-1834 (1997).
[4] Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids and Struct.35, 3455-3482 (1998). · Zbl 0918.73028
[5] Rivlin, R. S., Saunders, D. W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. Royal Society of London, Ser A243, 251-288 (1951). · Zbl 0042.42505
[6] Drozdov, A. D.: Finite elasticity and viscoelasticity. Singapore: World Scientific Publ. 1996. · Zbl 0839.73001
[7] Ogden, R. W.: Large deformation isotropic elasticity ? on the correlation of theory and experiment for incompressible rubberlike solids Proc. Royal Society of London, Ser. A326, 565-584 (1972). · Zbl 0257.73034
[8] Ogden, R. W.: Nonlinear elastic deformations. Chichester. Ellis Horwood 1984. · Zbl 0541.73044
[9] Benjeddou, A., Jankovich, E., Hadhri, T.: Determination of the parameters of Ogdens law using biaxial data and Levenberg-Marquardt-Fletcher algorithm. J. of Elastomers and Plastics25, 224-248 (1993).
[10] Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Encyclopedia of Physics, Vol. III/3 (Flügge, S., ed.), Berlin: Springer 1965. · Zbl 0779.73004
[11] Fosdick, R. L.: Dynamically possible motions of incompressible, isotropic, simple materials. Arch. Rational Mech. Anal.29, 272-288 (1968). · Zbl 0164.27305
[12] James, A. G., Green, A., Simpson, G. M.: Strain energy functions of rubber. I. Characterization of gum vulcanizates. J. of Appl. Polymer Science19, 2033-2058 (1975).
[13] Mooney, M.: A theory of large elastic deformation. J. of Appl. Physics11, 582-592 (1940). · JFM 66.1021.04
[14] Isihara, A., Hashitsume, N., Tatibana, M.: Statistical theory of rubber-like elasticity, IV. (Two-dimensional stretching). J. of Chemical Physics19, 1508-1512 (1951).
[15] Rivlin, R. S.: Large elastic deformations of isotropic materials I. Fundamental concepts, Philos. Trans. Royal Society of London, Series A240, 459-490 (1948). · Zbl 0029.32605
[16] Biderman, V. L.: Rasceti na Procnost, 40-87 (1958) (cited in Treloar [17]).
[17] Treloar, L. R. G.: The physics of rubber elasticity, 3rd ed. Oxford: Clarendon Press 1975. · Zbl 0347.73042
[18] Tschoegl, N. W.: Constitutive equations for elastomers. J. of Polymer Science Pt. A-19, 1959-1970 (1971).
[19] Wolfram, S.: Mathematica: A system for doing mathematics by computer, 2nd ed. Redwood City: Addison Wesley 1991. · Zbl 0671.65002
[20] Haupt, P.: Continuum mechanics and theory of materials. Berlin: Springer 2000. · Zbl 0938.74001
[21] Kao, B. G., Razgunas, L.: On the determination of strain energy functions of rubber. In: Proc. 6th Int. Conf. on Vehicle Structural Mechanics, pp. 145-154, April 22.?24. 1986, Detroit Michigan, 1986.
[22] Golub, G. H., van Loan, C. F.: Matrix computations. London: North Oxford Academic Publ. 1986. · Zbl 1118.65316
[23] Lawson, C. L., Hanson, R. J.: Solving least squares problems. Philadelphia: SIAM 1995. · Zbl 0860.65029
[24] Kielbasinski, A., Schwetlick, H.: Numerische lineare Algebra. Thun: Harri Deutsch 1988.
[25] Gill, P. E., Murray, W., Wright, M. H.: Practical optimization. 12th printing. London: Academic Press 1999.
[26] Dennis, J. E., Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations. Philadelphia: SIAM 1996. · Zbl 0579.65058
[27] Anderson, E. et al.: LAPACK Users Guide. Philadelphia: SIAM 1992. · Zbl 0755.65028
[28] Barsoum, E. G.: Constitutive relations and finite element analysis of nonlinear elastic continua. Report order no. 9313547, Columbia University 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.