×

Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries. (English) Zbl 1390.76123

Summary: Most reacting and two-phase flows of practical interest are turbulent but take place at low Mach numbers or under incompressible conditions. In order to investigate the properties of such complex flows with high accuracy but acceptable computing times, a suitable tool for direct numerical simulations (DNS), called DINOSOARS, has been developed. The present article describes the numerical components and methods implemented in this code, together with a detailed verification and validation phase, and finishes with two examples of full-scale simulations. We hope it might be useful as a “verification and validation guideline” for other researchers working on DNS of reacting flows. Since applications of growing complexity are considered by DNS, a direct boundary immersed boundary method (DB-IBM) has been implemented, allowing a description of arbitrary geometries on a fixed, but possibly refined, Cartesian mesh. A direct force IBM is implemented as well in DINOSOARS in order to resolve large moving spherical particles (much larger than the Kolmogorov scale) on the grid. Particles below the Kolmogorov scale are treated as point particles, taking into account additionally heat and mass transfer with the continuous flow. The efficient parallelization of the code relies on the open-source library 2DECOMP&FFT. The underlying Poisson equation is solved in a fast and accurate manner by FFT, even for non-periodic boundary conditions. The flexibility of DINOSOARS makes it a very promising tool for analyzing a variety of problems and applications involving turbulent reacting and/or two-phase flows.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76T10 Liquid-gas two-phase flows, bubbly flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Thévenin, D.; Behrendt, F.; Maas, U.; Przywara, B.; Warnatz, J., Development of a parallel direct simulation code to investigate reactive flows, Comput Fluids, 25, 5, 485-496, (1996) · Zbl 0900.76349
[2] Hilbert, R.; Thévenin, D., Influence of differential diffusion on maximum flame temperature in turbulent non-premixed hydrogen/air flames, Combust Flame, 138, 175-187, (2004)
[3] Thévenin, D.; Gicquel, O.; de Charentenay, J.; Hilbert, R.; Veynante, D., Two- versus three-dimensional direct simulations of turbulent methane flame kernels using realistic chemistry, Proc Combust Inst, 29, 2031-2039, (2003)
[4] Thévenin, D., Three-dimensional direct simulations and structure of expanding turbulent methane flames, Proc Combust Inst, 30, 629-637, (2005)
[5] Oran, E. S.; Boris, J. P., Numerical simulation of reactive flows, (1987), Elsevier New York · Zbl 0762.76098
[6] Reynolds, W. C., The potential and limitations of direct and large eddy simulation. lecture notes in physics. Berlin, Heidelberg:Springer;, 357, 313-343, (1990)
[7] Poinsot, T.; Veynante, D.; Candel, S., Quenching processes and premixed turbulent combustion diagrams, J Fluid Mech, 228, 561-606, (1991)
[8] Baum, M.; Poinsot, T.; Haworth, D. C.; Darabiha, N., Direct numerical simulation of H_{2}/O_{2}/N_{2} flames with complex chemistry in two-dimensional turbulent flows, J Fluid Mech, 281, 1-32, (1994)
[9] Poinsot, T.; Candel, S.; Trouvé, A., Applications of direct numerical simulation to premixed turbulent combustion, Prog Energy Combust Sci, 21, 531-576, (1996)
[10] Vervisch, L.; Veynante, D., Direct numerical simulation of non-premixed turbulent flames, Annu Rev Fluid Mech, 30, 655-691, (1998) · Zbl 1398.76077
[11] Thévenin, D.; Behrendt, F.; Maas, U.; Warnatz, J., Simulation of reacting flows with a portable parallel code using dynamic load-balancing, in: high-performance computing and networking. lecture notes in computer science. Berlin, Heidelberg: Springer;, 919, 378-383, (1995)
[12] Thévenin, D.; Behrendt, F.; Maas, U.; Warnatz, J., Parallel simulation of reacting flows using detailed chemistry. lecture notes in computer science. Berlin, Heidelberg:Springer;, 796, 125-130, (1994)
[13] Hawkes, E. R.; Sankaran, R.; Sutherland, J. C.; Chen, J. H., Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H_{2} kinetics, Proc Combust Inst, 32, 1633-1640, (2007)
[14] Coussement, A.; Gicquel, O.; Fiorina, B.; Degrez, G.; Darabiha, N., Multicomponent real gas 3-D-NSCBC for direct numerical simulation of reactive compressible viscous flows, J Comput Phys, 245, 259-280, (2013) · Zbl 1349.76115
[15] Bansal, G.; Mascarenhas, A.; Chen, J. H., Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures, Combust Flame, 162, 688-702, (2015)
[16] Bhagatwala, A.; Luo, Z.; Shen, H.; Sutton, J. A.; Lu, T.; Chen, J. H., Numerical and experimental investigation of turbulent DME jet flames, Proc Combust Inst, 35, 1157-1166, (2015)
[17] Duret, B.; Reveillon, J.; Menard, M.; Demoulin, F. X., Improving primary atomization modeling through DNS of two-phase flows, Int J Multiphase Flow, 55, 130-137, (2013)
[18] Kitano, T.; Nishio, J.; Kurose, R.; Komori, S., Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation., Combust Flame, 161, 551-564, (2014)
[19] de Charentenay, J.; Thévenin, D.; Zamuner, B., Comparison of direct numerical simulations of turbulent flames using compressible or low-Mach number formulations, Int J Numer Meth Fluids, 39, 497-515, (2002) · Zbl 1101.80308
[20] Poinsot, T.; Veynante, D., Theoretical and numerical combustion, (2011), Bordeaux, France: Aquaprint
[21] Majda, A.; Sethian, J., The derivation and numerical solution of the equations for zero Mach number combustion, Combust Sci Technol, 42, 185-205, (1985)
[22] Hilbert, R.; Tap, F.; El-Rabii, H.; Thévenin, D., Impact of detailed chemistry and transport models on turbulent combustion simulations, Prog Energy Combust Sci, 30, 61-117, (2004)
[23] Ern, A.; Giovangigli, V., Multicomponent transport algorithms. lecture notes in physics monographs. Berlin, Heidelberg: Springer;, 24, (1994) · Zbl 0820.76002
[24] Ern, A.; Giovangigli, V., Fast and accurate multicomponent transport property evaluation, J Comput Phys, 120, 1, 105-116, (1995) · Zbl 0938.76097
[25] Fru, G.; Janiga, G.; Thévenin, D., Impact of volume viscosity on the structure of turbulent premixed flames in the thin reaction zone regime, Flow Turb Combust, 88, 451-478, (2012) · Zbl 1248.76117
[26] Li, N.; Laizet, S., 2DECOMP&FFT - a highly scalable 2D decomposition library and FFT interface, Cray user’s group 2010 conference, (2010)
[27] Laizet, S.; Lamballais, E.; Vassilicos, J. C., A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence, Comput Fluids, 39, 471-484, (2010) · Zbl 1242.76078
[28] Laizet, S.; Li, N., Incompact3d: a powerful tool to tackle turbulence problems with up to O(10^{5}) computational cores, Int J Numer Meth Fluids, 67, 1735-1757, (2011) · Zbl 1419.76481
[29] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes in FORTRAN, (1992), Cambridge University Press New York · Zbl 0778.65002
[30] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J Comput Phys, 59, 308-323, (1985) · Zbl 0582.76038
[31] Brown, D.; Cortez, R.; Minion, M., Accurate projection methods for the incompressible Navier-Stokes equations, J Comput Phys, 168, 2, 464-499, (2001) · Zbl 1153.76339
[32] Lucci, F.; Ferrante, A.; Elghobashi, S., Modulation of isotropic turbulence by particles of Taylor-length-scale size, J Fluid Mech, 650, 5-55, (2010) · Zbl 1189.76251
[33] Najm, H. N.; Wyckoff, P. S.; Knio, O. M., A semi-implicit numerical scheme for reacting flow. I. stiff chemistry, J Comput Phys, 143, 381-402, (1998) · Zbl 0936.76064
[34] Knio, O. M.; Najm, H. N.; Wyckoff, P. S., A semi-implicit numerical scheme for reacting flow. II. stiff, operator-split formulation, J Comput Phys, 154, 428-467, (1999) · Zbl 0958.76061
[35] Hairer, E.; Wanner, G., Solving ordinary differential equations II: stiff and differential-algebraic problems, (1999), Berlin: Springer-Verlag
[36] Caudal, J.; Fiorina, B.; Labégorre, B.; Gicquel, O., Modeling interactions between chemistry and turbulence for simulations of partial oxidation processes, Fuel Process Technol, 134, 231-242, (2015)
[37] Zhong, X., Additive semi-implicit Runge-Kutta methods for computing high speed non equilibrium reactive flows, J Comput Phys, 128, 19-31, (1996) · Zbl 0861.76057
[38] Cooley, J. W.; Lewis, P. A.W.; Welsh, P. D., The fast Fourier transform algorithm: programming considerations in the calculation of sine, cosine and Laplace transforms, J Sound Vib, 12, 315-337, (1970) · Zbl 0195.46301
[39] Swarztrauber, P. N., Symmetric ffts, Math Comput, 47, 323-346, (1986) · Zbl 0615.42008
[40] http://computation.llnl.gov/project/linear_solvers/software.php.
[41] Baum, M.; Poinsot, T.; Thévenin, D., Accurate boundary conditions for multicomponent reactive flows., J Comput Phys, 116, 247-261, (1995) · Zbl 0818.76047
[42] Kraichnan, R. H., Diffusion by a random velocity field, Phys Fluids, 13, 22-31, (1970) · Zbl 0193.27106
[43] Klein, M.; Sadiki, A.; Janicka, J., A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation, J Comput Phys, 186, 625-665, (2002) · Zbl 1047.76522
[44] Kempf, A.; Klein, M.; Janicka, J., Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries, Flow Turb Combust, 74, 67-84, (2005) · Zbl 1113.76346
[45] Anderson, J. D., Computational fluid dynamics: the basics with applications, (1995), McGraw-Hill New York
[46] Tannehill, J. C.; Anderson, D. A.; Pletcher, R. H., Computational fluid mechanics and heat transfer, (1997), Washington: Taylor & Francis
[47] Farrashkhalvat, M.; Miles, J. P., Basic structured grid generation: with an introduction to unstructured grid generation, (2003), Oxford: Butterworth-Heinemann
[48] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J Comput Phys, 161, 35-60, (2000) · Zbl 0972.76073
[49] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 239-261, (2005) · Zbl 1117.76049
[50] Steinman, D. A.; Hoi, Y.; Fahy, P.; Morris, L.; Walsh, M. T.; Aristokleous, N., Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 summer bioengineering conference CFD challenge, J Biomech Eng, 135, 021016, (2013)
[51] Eshghinejadfard, A.; Abdelsamie, A.; Janiga, G.; Thévenin, D., Direct-forcing immersed boundary lattice Boltzmann simulation of particle/fluid interactions for spherical and non-spherical particles, Particuology, 25, 93-103, (2016)
[52] Abdelsamie, A.; Thévenin, D., Direct numerical simulation of burning n-heptane droplets: auto-ignition and turbulence modulation mechanisms, ERCOFTAC workshop Direct and Large-Eddy Simulation 10, pp152, (2015), Springer
[53] Abdelsamie, A.; Lee, C., Decaying versus stationary turbulence in particle-laden isotropic turbulence: turbulence modulation mechanism, Phys Fluids, 24, 015106, (2012)
[54] Abdelsamie, A.; Lee, C., Decaying versus stationary turbulence in particle-laden isotropic turbulence: heavy particle statistics modifications, Phys Fluids, 25, 033303, (2013)
[55] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J Comput Phys, 209, 448-476, (2005) · Zbl 1138.76398
[56] Abdelsamie, A.; Thévenin, D., Modulation of isotropic turbulence by resolved and non-resolved spherical particles, (Fröhlich, J., Direct and Large-Eddy Simulation IX, (2015), ERCOFTAC Series, Springer Cham, Switzerland), 621-629
[57] Abdelsamie, A.; Eshghinejadfard, A.; Oster, T.; Thévenin, D., Impact of the collision model for fully resolved particles interacting in a fluid, Proceedings of the 4th ASME 2014 joint US-European fluids engineering division summer meeting (Chicago, IL), (2014), ASME
[58] Comte-Bellot, G.; Corrsin, S., Simple Eulerian time correlation of full and narrow band velocity signals in isotropic turbulence, J Fluid Mech, 48, 2, 273-337, (1971)
[59] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraen, D.; Cary, A., High-order CFD methods: current status and perspective, Int J Numer Meth Fluids, 72, 811-845, (2013) · Zbl 1455.76007
[60] DeBonis, J. R., Solutions of the Taylor-Green vortex problem using high-resolution explicit finite difference methods, AIAA Pap 2013-0382, (2013)
[61] van Rees, W. M.; Leonard, A.; Pullin, D. I.; Koumoutsakos, P., A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers, J Comput Phys, 230, 2794-2805, (2011) · Zbl 1316.76066
[62] Moser, R.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to re\({}_\tau = 590\), Phys Fluids, 11, 4, 943-945, (1999) · Zbl 1147.76463
[63] Vreman, A. W.; Kuerten, J. G.M., Comparison of direct numerical simulation databases of turbulent channel flow at re\({}_\tau = 180\), Phys Fluids, 26, 015102, (2014)
[64] Niu, X. D.; Shu, C.; Chew, Y. T.; Peng, Y., A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys Lett A, 354, 173-182, (2006) · Zbl 1181.76111
[65] Dennis, S. C.R.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J Fluid Mech, 42, 3, 471-489, (1970) · Zbl 0193.26202
[66] Niu, X. D.; Chew, Y. T.; Shu, C., Simulation of flows around an impulsively started circular cylinder by Taylor series expansion- and least squares-based lattice Boltzmann method, J Comput Phys, 188, 176-193, (2003) · Zbl 1038.76033
[67] Chemical kinetic mechanism for combustion applications, Center for energy research (Combustion division), University of California at San Diego, http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
[68] Luo, Z.; Yoo, C. S.; Richardson, E. S.; Chen, J. H.; Law, C. K.; Lu, T., Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated co-flow, Combust Flame, 159, 265-274, (2012)
[69] Patel, A.; Kong, S.; Reitz, R., Development and validation of a reduced reaction mechanism for HCCI engine simulations, SAE Tech Pap 2004-01-0558, (2004)
[70] Liu, S.; Hewson, J. C.; Chen, J. H.; Pitsch, H., Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow, Combust Flame, 137, 320-339, (2004)
[71] Jachimowski, C. J., An experimental and analytical study of acetylene and ethylene oxidation behind shock waves, Combust Flame, 29, 55-66, (1977)
[72] Baker, J. A.; Kinner, G. B., Shock-tube studies on the ignition of ethylene-oxygen-argon mixtures, Combust Flame, 19, 347-350, (1972)
[73] Kumar, K.; Mittal, G.; Sung, C.-J.; Law, C. K., An experimental investigation of ethylene/O_{2}/diluent mixtures: laminar flame speeds with preheat and ignition delays at high pressures, Combust Flame, 153, 343-354, (2008)
[74] Ciezki, H. K.; Adomeit, G., Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant condition, Combust Flame, 93, 4, 421-433, (1993)
[75] Egolfopoulos, F. N.; Zhu, D. L.; Law, C. K., Experimental and numerical determination of laminar flame speeds: mixtures of C_{2}-hydrocarbons with oxygen and nitrogen, Proc Combust Inst, 23, 471-478, (1990)
[76] Jomaas, G.; Zheng, X. L.; Zhu, D. L.; Law, C. K., Experimental determination of counterflow ignition temperatures and laminar flame speeds of C_{2}-C_{3} hydrocarbons at atmospheric and elevated pressures, Proc Combust Inst, 30, 193-200, (2005)
[77] Hassan, M. I.; Aung, K. T.; Kwon, O. C.; Faeth, G. M., Properties of laminar premixed hydrocarbon/air flames at various pressures, J Propul Power, 14, 4, 479-488, (1998)
[78] Ayachit, U., The paraview guide: a parallel visualization application, (2015), Kitware Inc. Clifton Park, New York
[79] Bauer, A. C.; Geveci, B.; Schroeder, W., The paraview catalyst user’s guide, (2015), Kitware Inc. Clifton Park, New York
[80] Schroeder, W.; Martin, K.; Lorensen, B., Visualization toolkit: an object-oriented approach to 3D graphics, (2006), Kitware Inc. Clifton Park, New York
[81] Mizobuchi, Y.; Tachibana, S.; Shinio, J.; Ogawa, S.; Takeno, T., A numerical analysis of the structure of a turbulent hydrogen jet lifted flame, Proc Combust Inst, 29, 2, 2009-2015, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.